臺灣大學數學系111學年度第2學期博士班一般資格考試

科目: 偏微分方程

2023.02.23

1. (25%) Consider the initial value problem

$$\partial_t u + u \partial_x u = 0, \quad (x, t) \in \mathbb{R} \times (0, 1),$$

 $u(x, 0) = x^3 - x, \quad \text{for } x \in \mathbb{R}.$

- (a.) Show that the initial value problem above has a classical solution. (b.) Evaluate $\partial_t u$ and $\partial_x u$ at the point $(1, \frac{1}{2})$. (c.) Find a characteristic such that $|\partial_x u|$ tends to infinity along it as t tends to 1 from below.
- 2. (25%) (a.) Let U be an open set in \mathbb{R}^3 and V be a connected compact subset of U. Show that there exists a constant C > 0 such that

$$\frac{1}{C}u(y) \le u(x) \le Cu(y), \forall x, y \in V$$

for all nonnegative harmonic function u in U. (b.) Show that there exists a constant C > 0 such that

$$\frac{1}{C}u(y) \le u(x) \le Cu(y), \forall x, y \in \mathbb{R}^3$$

for all nonnegative harmonic function u in \mathbb{R}^3 . (c.) Show that if u is a nonnegative harmonic function in \mathbb{R}^3 then u is a constant function.

3. (25%) Let Ω be an open convex bounded smooth domain in \mathbb{R}^3 . (a.) Prove that there exists a conmstant C > 0 such that

$$||u||_{L^2(\Omega)} \le C||Du||_{L^2(\Omega)}$$

for all $u \in H_0^1(\Omega)$. (b.) Prove that for each $f \in L^2(\Omega)$, there exists a unique weak solution $u \in H_0^1(\Omega)$ of the boundary-value problem

$$\begin{cases} -\triangle u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

4. (25%) Let u solve the following initial value problem

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{in } \mathbb{R} \times (0, \infty) \\ u = g, u_t = h, & \text{on } \mathbb{R} \times t = 0, \end{cases}$$

where g and h are smooth functions with compact supports. Prove (a.)

$$\int_{\mathbb{R}} |u_x(x,t)|^2 + |u_t(x,t)|^2 dx = \int_{\mathbb{R}} |u_x(x,0)|^2 + |u_t(x,0)|^2 dx$$

for all t > 0.

(b.)

$$\int_{\mathbb{R}} |u_x(x,t)|^2 dx = \int_{\mathbb{R}} |u_t(x,t)|^2 dx$$

for large enough t.