臺灣大學數學系

109 學年度下學期博士班資格考試題

科目: 偏微分方程

2021.02.25

1.(a)(10%) Let $B = \{x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n | x_1^2 + x_2^2 + \dots + x_n^2 < 1\}$ and $S_{\pm} = \{(0, 0, \dots, 0, \pm 1)\}$. Argue the solvability of the boundary value problem:

$$\begin{cases} \Delta u = 0 & \text{in } B, \\ u = 0 & \forall \ x \in \partial B \setminus S_{\pm}, \ u = 1 \text{ at } x = S_{\pm}. \end{cases}$$

(b)(15%) Let u(x) be a complex-valued harmonic function in an open domain Ω . Assume $x_0 \in \Omega$ such that $\sup_{\Omega} |u| = |u(x_0)|$. Show that u is a constant.

(c)(15%) Now let $\Omega = \mathbb{R}^n \setminus \overline{B}$ and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfy $\Delta u = 0$ in Ω . Furthermore, assume

$$\lim_{|x| \to \infty} u(x) = 0.$$

Show that

$$\sup_{\Omega} |u| = \max_{\partial \Omega} |u|.$$

2. Consider the scalar hyperbolic equation

$$\frac{\partial u}{\partial t} = a \frac{\partial u}{\partial x}$$
 in $0 \le x \le 1$, $t \ge 0$,

where a is a positive constant. Let u(x,0) = f(x) and assume that $f(x) \in C^1$ in [0,1]. (a)(10%) Let $g(t) \in C^1$, $t \ge 0$, be any given function. Please impose the boundary value u(x,t) = g(t) on suitable boundary such that u(x,t) is solvable for all $0 \le x \le 1$ and $t \ge 0$. (b)(20%) Find the compatibility conditions on g(t) and f(x) such that $u \in C^1$ in $0 \le x \le 1$ and $t \ge 0$.

3.(10%) Let Ω be an open bounded domain in \mathbb{R}^n and $0 \in \Omega$. Show that $f(x) = |x|^{-\alpha}$ belongs to $W^{k,2}(\Omega)$ whenever $k + \alpha < \frac{n}{2}$, where k is a nonnegative integer.

4.(20%) Let Ω be a bounded domain with Lipschitz boundary in \mathbb{R}^n . Define

$$u_{\Omega} = \frac{1}{|\Omega|} \int_{\Omega} u(x) dx.$$

Let $1 \leq p < n$. For any $u \in W^{1,p}(\Omega)$, derive the Sobolev-Poincaré inequality

$$||u - u_{\Omega}||_{L^{np/(n-p)}(\Omega)} \le C||\nabla u||_{L^{p}(\Omega)},$$

where C is independent of u. (Hint: use the contradiction argument based on the compact embedding theorem to derive the Poincaré inequality and then by the continuous embedding $W^{1,p}(\Omega) \subset L^{np/(n-p)}(\Omega)$ to conclude the result.)