國立臺灣大學數學系 九十五學年度博士班資格考試試題 科目:數值偏微分方程

2007.06.01

1. (30 points) Consider the initial value problem for the linear advection equation of the form

$$q_t + a q_x = 0, x \in (-1, 1), t > 0,$$
 (1)

with the initial condition $q(x,0) = q_0(x)$, and periodic boundaries q(-1,t) = q(1,t); $a \in \mathbb{R}$. Here q_t denotes the partial derivative of q with respective to t, for t = x and t.

- (a) (10 points) Derive the Lax-Wendroff method for numerical approximation of (1).
- (b) (15 points) Find the local truncation error as well as the stability condition of the Lax-Wendroff method derived in (a).
- (c) (5 points) Discuss the convergence of the method under mesh refinement.
- 2. (25 points) Suppose that (1) is replaced by the inviscid Burger's equation

$$q_t + (q^2/2)_x = 0, (2)$$

with the same initial and boundary conditions as before.

- (a) (5 points) Devise a conservative flux-difference scheme for numerical approximation of (2).
- (b) (10 points) Find the local truncation error as well as the stability condition of the numerical method derived in (a).
- (c) (10 points) What about the convergence of the method in this case?
- 3. (15 points) Consider the finite-difference scheme

$$Q_{j}^{n+1} = Q_{j}^{n} + \frac{\Delta t}{(\Delta x)^{2}} \left(Q_{j+1}^{n} - 2Q_{j}^{n} + Q_{j-1}^{n} \right) - b \frac{\Delta t}{2\Delta x} \left(Q_{j+1}^{n} - Q_{j-1}^{n} \right)$$

for the convection-diffusion equation $q_t = q_{xx} - bq_x$ which is assumed to be well-posed with suitable initial and boundary conditions, $b \in \mathbb{R} > 0$. Here Q_j^n denotes the numerical approximation of the exact solution $q(x_j, t_n)$ at the point x_j and time t_n , and Δx and Δt are the spatial and temporal mesh size, respectively. Prove that the method converges under mesh refinements.

4. (30 points) Devise a fast solver for numerical approximation of the Poisson equation ∇²q = f over a circular domain in two space dimensions with the Dirichlet boundary condition Algorithmic detail is required and so as the order of accuracy and convergence of the proposed scheme.