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I. Let V be the Levi-Civita connection on a Riemannian n-manifold M with a

metric g;; defined by
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Define the Christoffel symbol I'f; by
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and the Riemannian curvature tensor R™ ., by
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Finally we define the Ricci curvature tensor and scalar curvature by
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Rij =g"Ry; and R=gYR;.

(5%) (i) Show that
(10%) (ii) Show that
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(10%) (iii) Show that
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(10%) (iv) Show that
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for all 1, 7, k.




(10%) (v) Show that
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(10%) (vi) Suppose that for some smooth function p, we have
Ri; = pgs;

on the whole manifold M. Show that p is constant and
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II. Let (R? g(t)) be a complete Riemannian surface with
dz?® + dy?
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g(t) =
(10%) (i) Show that in polar coordinates (7, 6), we may rewrite
g(0) = ds® + tanh? sdf?, s = log(r + v1+ 72)

(10%) (ii) Show that the scalar curvature of (R?, g(0))
1472

Ry

(10%) (iii) Find 1-parameter group of conformal diffeomorphisms ¢, : R? — R?
such that

9(t) = ¢;9(0).

ITII. Let M be an oriented differentiable n-manifold and H%, (M, R) be the pth
de Rham cohomology group. Show that
(10%) (i) If M is a closed manifold, then

dim(HY_ (M, R)) < co.

(5%) (i) If M = R™, then
H? A(M,R) =0

for all p > 0.




