臺灣大學數學系113學年度第2學期博士班一般資格考試

科目:幾何與拓撲

2025.02.21

- (1) $(10 \hat{\beta})$ Prove that if a regular surface in \mathbb{R}^3 contains a straight line, then the surface has non-positive Gauss curvature at all the points of this line.
- (2) (10β) Does there exist an embedded, compact minimal surface in \mathbb{R}^3 ? Why?
- (3) (10 $\hat{\sigma}$) Prove that that $O(n) = \{A | A \in GL(n, R), A^T A = I_n\}$ is a regular submanifold of

 $GL(n, R) = \{A | A \text{ is a } n \times n \text{ matrix with } det(A) \neq 0\},\$

- (4) Let ∇ be the Levi-Civita connection of a Riemannian manifold (M, g). Recall that $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$. Let $\nabla_{X,Y}^2 Z = \nabla_X \nabla_Y Z - \nabla_{\nabla_X Y} Z.$ (a) $(5\hat{\sigma})$ Show that $\nabla^2_{XY}Z - \nabla^2_{YX}Z = R(X,Y)Z$.

 - (b) $(15\hat{\sigma})$ Suppose S is a (0,4)-tensor. Recall that the covariant derivative tensor $\nabla_X S$ is defined by

 $(\nabla_X S)(U, V, W, Z)$

 $=X(S(U,V,W,Z)) - S(\nabla_X U,V,W,Z) - S(U,\nabla_X V,W,Z) - S(U,V,\nabla_X W,Z) - S(U,V,W,\nabla_X Z)$ We denote by $\nabla^2_{X,Y}S$ the second covariant derivative of S:

$$\nabla_{X,Y}^2 S = \nabla_X \nabla_Y S - \nabla_{\nabla_X Y} S.$$

Prove that

 $(\nabla^2_{XV}S)(U, V, W, Z) - (\nabla^2_{VX}S)(U, V, W, Z)$ = -S(R(X,Y)U,V,W,Z)) - S(U,R(X,Y)V,W,Z) - S(U,R(X,Y)W,Z) - S(U,V,W,R(X,Y)Z)

(5) A manifold (M^{2n}, ω) is called a symplectic manifold if ω is a closed two-form $(d\omega = 0)$ and ω is non-degenerate, namely ω^n is a nowhere vanishing 2*n*-form. (a) $(10\hat{\sigma})$ Can ω be an exact form if M is compact (without boundary)?

Justify your answer.

(b) (10 $\hat{\sigma}$) When will a unit sphere $S^{2n} \subset \mathbf{R}^{2n+1}$ admits a symplectic structure? Justify your answer. You may use the fact that $H^p(S^{2n}) = \mathbf{R}$ for p = 0 and p = 2n and $H^p(S^{2n}) = 0$ for $1 \le p \le 2^n - 1$.

- (6) $(10\hat{\sigma})$ Let $f: M \to N$ be a smooth map between smooth manifolds, X and Y be smooth vector fields on M and N, respectively, and suppose that $f_*(X) = Y$. Then prove that $f^*(L_Y\omega) = L_X(f^*(\omega))$ where ω is a 1-form on N. Here L denotes the Lie derivative.
- (7) $(10\hat{\sigma})$ For any two smooth vector fields X, Y on a smooth manifold M, prove the formula $[L_X, i_Y] = i_{[X,Y]}$ where L_X denotes the Lie derivative and i_X is the contraction of vector field acting on differential forms.
- (8) $(10\hat{\sigma})$ Let M be a closed manifold and X be a vector field on M. Denote the flow generated by X by $\psi_t : M \to M$ defined by $\frac{d}{dt}\psi_t(x) = X_{\psi_t(x)}$ for any $x \in X$.

Given a function f, prove that $f \circ \psi_1 - f \circ \psi_0 = \int_0^1 \psi_t^*(df)(X) dt$.