臺灣大學數學系 107 學年度下學期博士班資格考試題 科目:幾何與拓樸

2019.02.22

1. [10%+5%]

- (a) Suppose that (M, g) is a 3-dimensional Riemannian manifold which is Ricci flat. Does it have to be flat? If your answer is yes, give a proof. If your answer is no, give a counter-example.
- (b) What if M is 4-dimensional Ricci flat manifold? Explain the reason breifly.
- 2. [20%+10%] Let c be a non-negative constant. Consider the following metric on \mathbb{R}^n :

$$g_c = \frac{\sum_{j=1}^n (\mathrm{d}x^j)^2}{\left(1 + \frac{c}{4} \sum_{j=1}^n (x^j)^2\right)^2}.$$

- (a) Calculate the sectional curvatures of (\mathbb{R}^n, g_c) .
- (b) For which values of c is (\mathbb{R}^n, g_c) complete? Justify your answer.
- 3. [10%+10%] Let $F:(\tilde{M},\tilde{g})\to (M,g)$ be a Riemannian submersion. Namely, F is a submersion, and $\mathrm{d}F:\ker(\mathrm{d}F)^\perp\subset T_p\tilde{M}\to T_{F(p)}M$ is an isometry for every $p\in \tilde{M}$.
 - (a) Show that *F* shortens distances.
 - (b) Prove that if (\tilde{M}, \tilde{g}) is a complete metric space, so is (M, g).
- 4. [10%+10%] Let (M,g) be a Riemannian manifold, and let f be a smooth function on M. Suppose that $U,V\in T_pM$; the Hessian of f in (U,V) is defined by

$$(\operatorname{Hess}^{M} f)(U, V) = U(\tilde{V}(f)) - (\nabla_{U} \tilde{V})(f)$$

where \tilde{V} is any smooth extension of V. One can check that it does not depend on the extension of V, and is symmetric in U, V. The Laplacian of f is defined to be the trace of the Hessian, $\Delta^M f = \operatorname{tr}_g \operatorname{Hess}^M f$.

- (a) Consider the unit sphere in the Euclidean space, $S^n \subset \mathbb{R}^{n+1}$, with the induced metric. Consider the restriction of the standard coordinate function, x^j for $j=1,\ldots,n+1$. Calculate Hess^{S^n} x^j .
- (b) Suppose that $\Sigma^k \subset \mathbf{S}^n$ is a minimal submanifold. Find $\Delta^{\Sigma} x^j$.
- 5. [5%+10%] Let M be a smooth 4-dimensional manifold. A symplectic form is a 2-form ω on M such that $d\omega = 0$, and $\omega \wedge \omega$ is a nowhere vanishing 4-form.
 - (a) Construct a symplectic form on \mathbb{R}^4 .
 - (b) Show that there are no symplectic forms on the 4-sphere, S^4 .