臺灣大學數學系 107 學年度上學期博士班資格考試題 科目:幾何與拓樸

2018.09.14

(1) [15 分 +10 分] Let \mathbb{H} be the upper half plane $\{(x,y) \in \mathbb{R}^2 : y > 0\}$. For any $\alpha \in \mathbb{R}$, define the metric

$$g_{\alpha} = \frac{1}{y^{\alpha}} (\mathrm{d}x^2 + \mathrm{d}y^2) \ .$$

- (a) If $\alpha \neq 2$, prove that (\mathbb{H}, g_{α}) is incomplete.
- (b) Write (x,y) as z=x+iy. For any $(a,b,c,d)\in\mathbb{R}^4$ with ad-bc=1, show that

$$z \mapsto \frac{az+b}{cz+d}$$

defines an isometry of (\mathbb{H}, g_2) .

(2) [25 分] Let \mathbb{H} be the upper half plane $\{(x,y) \in \mathbb{R}^2 : y > 0\}$, and S^1 be the circle $\{e^{i\theta}\}$. Consider the following metric on $\mathbb{H} \times S^1$

$$g = \frac{\mathrm{d}x^2 + \mathrm{d}y^2}{y^2} + \left(\mathrm{d}\theta + \frac{1}{y}\mathrm{d}x\right)^2 \ .$$

Denote $y\partial_x - \partial_\theta$ by e_1 , $y\partial_y$ by e_2 and ∂_θ by e_3 .

Calculate its curvature R_{2112} , R_{3113} and R_{3223} , where

$$R_{jiij} = \left\langle (\nabla_{e_i} \nabla_{e_j} - \nabla_{e_j} \nabla_{e_i} - \nabla_{[e_i, e_j]}) e_i, e_j \right\rangle .$$

(3) [20 分] Let M be a hyperbolic manifold. Suppose that $\gamma_0: S^1 \to M$ is a closed geodesic, whose γ_0' has constant length. Is it possible to find a one-parameter family of closed curves

$$\gamma: S^1 \times \{t \in \mathbb{R}: -\epsilon < t < \epsilon\} \to M$$

with

$$\gamma(\cdot,0) = \gamma_0(\cdot)$$
 and $\frac{\partial \gamma}{\partial t}\Big|_{t=0} \perp \gamma'_0$ everywhere on γ_0 ,

such that

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} L[\gamma(\,\cdot\,,t)] < 0 ?$$

Give your reason.

Here, $L[\gamma(\cdot,t)]$ means the arc length of the closed curve $\gamma(\cdot,t):S^1\to M$.

(4) [5 分 +5 分 +10 分] On \mathbb{R}^3 , consider the 1-form

$$a = dz + \frac{1}{2}(x dy - y dx) .$$

- (a) Calculate da and $a \wedge da$.
- (b) Note that $\ker a$ is everywhere 2-dimensional. Check that $\mathrm{d}a|_{\ker a}$ is everywhere non-degenerate.
- (c) Suppose that U and V are vector fields defined on the unit ball B, which are pointwise linearly independent and belongs to the kernel of a. Prove that [U, V] is nowhere in the kernel of a.
- (5) [10 分] Let Σ be a genus 2 surface (closed and oriented). Suppose that $f: \Sigma \to \Sigma$ is a continuous map which is homotopic to the identity map. Show that f must admit a fixed point.