國立臺灣大學數學系 103學年度第2學期博士班資格考試題 科目:幾何與拓撲

2015.03.06

(1) (15%) Let f(r) be a positive smooth function on $(0, \infty)$. Consider the following metric on $(0, \infty) \times S^2$:

$$g = (dr)^2 + f(r)^2 g_{S^2} = (dr)^2 + f(r)^2 ((d\phi)^2 + (\sin \phi d\theta)^2) .$$

Compute the Ricci curvature of g.

- (2) (20%) Let (M,g) be a Riemannian manifold whose sectional curvature is greater than 1. Suppose that $\gamma(t):[0,1]\to M$ is a smooth curve with unit speed, and V(t) is a nonzero parallel vector field along γ . For $s\in (-\epsilon,\epsilon)$, consider the curve $\gamma_s(t):[0,1]\to M$ defined by $\exp_{\gamma(t)}(sV(t))$. For s sufficient small, compare the length of $\gamma_s(t)$ and $\gamma(t)$. Explain your answer. (Hint: For any $t_0\in [0,1]$. Consider the vector field $\frac{\partial}{\partial t}\big|_{t=t_0}\gamma_s$ along the s-curve $\gamma_s(t_0)$.)
- (3) Let (M, g) be a Riemannian manifold, and V be a vector field on M. It is called a Killing vector field if it preserves the metric, i.e. $L_V g = 0$.
 - (a) (10%) Show that V is a Killing vector field if and only if $V_{j;k} + V_{k;j} = 0$ in terms of a local coordinate $\{x^j\}$. Here, $V_{j;k}$ means the $\frac{\partial}{\partial x^j}$ -component of $\nabla_{\frac{\partial}{\partial x^k}}V$. Namely, $\nabla_{\frac{\partial}{\partial x^k}}V = \sum_j V_{j;k} \frac{\partial}{\partial x^j}$.
 - (b) (5%) Let $\gamma(t): (-\epsilon, \epsilon) \to M$ be a geodesic. Prove that $g(V, \gamma')$ is a constant (along γ) if V is a Killing vector field. (Hint: Calculate $\frac{d}{dt}g(V, \gamma')$.)
- (4) Let G be a Lie group, and \langle , \rangle be a *left-invariant* metric on G. Suppose that X, Y, Z, W are *left-invariant* vector fields on G. Prove the following formulae.
 - (a) (7%) The Levi-Civita connection is given by

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left(\langle [X, Y], Z \rangle - \langle [X, Z], Y \rangle - \langle [Y, Z], X \rangle \right) .$$

(b) (6%) The Riemann curvature tensor is given by

$$\langle R(X,Y)Z,W\rangle = \langle \nabla_X Z, \nabla_Y W\rangle - \langle \nabla_Y Z, \nabla_X W\rangle - \langle \nabla_{[X,Y]}Z,W\rangle \ .$$

(c) (7%) If \langle , \rangle is *bi-invariant*, show that any left-invariant vector field is a Killing vector field. (Hint: A bi-invariant metric satisfies $\langle [X,Y],Z\rangle = \langle X,[Y,Z]\rangle$ for any left-invariant vector fields X,Y,Z.)

(5) (15%) Consider the standard n-sphere $S^n = \{(x^1, x^2, \dots, x^{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{j=1}^{n+1} (x^j)^2 = 1\}$ with the metric induced from the standard metric of \mathbb{R}^{n+1} . Let $M \subset S^n$ be a k-dimensional submanifold. Prove that M is a minimal submanifold of S^n if and only if the coordinate functions x^1, x^2, \dots, x^{n+1} are eigenfunctions of M with eigenvalue k. That is to say,

$$-\Delta_M x^j = k x^j$$

for
$$j \in \{1, 2, \dots, n+1\}$$
.

(Hint: Here, Δ_M is the Laplace-Beltrami operator of M with the induced metric g. Let f be a smooth function on M. The Hessian of f with respect to g is a (0,2)-tensor defined by

$$\operatorname{Hess}_{M}(f)(X,Y) = \nabla_{X}(\nabla_{Y}f) - (\nabla_{\nabla_{X}Y})(f)$$

where ∇ is the Levi-Civita connection of g. The Laplace-Beltrami operator acting on f, $\Delta_M f$, is the traces of $\operatorname{Hess}_M(f)$ with respect of g.

If the function f is defined on \mathbb{R}^{n+1} , $\operatorname{Hess}_{\mathbb{R}^{n+1}}(f)$ is related to $\operatorname{Hess}_{S^n}(f)$, and $\operatorname{Hess}_{S^n}(f)$ is also related to $\operatorname{Hess}_M(f)$.)

- (6) Denote by Σ_g a closed, orientable surface of genus g. Suppose that $f: \Sigma_g \to \Sigma_h$ is a continuous map from a surface of genus g to a surface of genus f.
 - (a) (5%) Define the *degree* of the map f. There may be more many ways to do it, and you only have to provide one definition.
 - (b) (10%) If g < h, does that exist a continuous map $f : \Sigma_g \to \Sigma_h$ with nonzero degree? Explain your answer. (Hint: The cohomology constitutes a ring.)