臺灣大學數學系 99 學年度上學期博士班資格考試題 科目:離散數學

- 1. (20%) Suppose G_n is the graph with vertex set $V(G_n) = \{v_0, v_1, v_2, \ldots, v_n\}$ and edge set $E(G_n) = \{v_0v_i : 1 \le i \le n\} \cup \{v_iv_{i+1} : 1 \le i \le n-1\}$. Determine the number $\tau(G_n)$ of spanning trees of G_n .
- 2. (20%) Suppose M is an $n \times n$ matrix of non-negative real numbers in which each row or each column sums up to 1. Prove that there is a positive integer r, r positive reals c_1, c_2, \ldots, c_r , and r permutation matrices P_1, P_2, \ldots, P_r such that $M = \sum_{i=1}^r c_i P_i$.
- 3. (20%) (a) Prove that χ(G) ≤ Δ(G) + 1 for any graph G.
 (b) Prove that χ(G) ≤ Δ(G) for any connected graph G that is neither a complete graph nor an odd cycle.
- 4. (20%) Consider the Ramsey number R(m, n) which is the minimum number k such that for every 2-edge coloring of K_k there is always a monochromatic copy of K_m or K_n .

(a) Prove that $R(m,n) \leq R(m-1,n) + R(m,n-1) + 1$. Use this to derive an upper bound for R(m,n) in terms of m and n.

(b) Derive a lower bound for R(n, n).

- 5. (20%) The thickness of a graph G, denoted by t(G), is the minimum k such that the edges of G can be decomposed into k planar graphs.
 - (a) Determine $t(K_{4,4})$.
 - (b) Determine $t(K_{5,5})$.
 - (c) Prove that $t(K_n) \ge \lceil (n+2)/6 \rceil$.
 - (d) Prove that if $n \neq 9, 10$, then $t(K_n) = \lfloor (n+2)/6 \rfloor$.
 - (e) What are the values of $t(K_9)$ and $t(K_{10})$? Why?