國立臺灣大學數學系 九十五學年度博士班資格考試試題 科目:離散數學

2007.06.01

Each problem weights 20 points.

- 1. Determine the number of m-subsets of the set $[n] = \{1, 2, ..., n\}$ for each value of $m \pmod{3}$ and each value of $n \pmod{6}$.
- 2. Prove that if G is the complement of a disconnected simple graph then $e(G) \le \Delta(G)^2$, with equality only for $K_{\Delta(G),\Delta(G)}$. Also prove that if G is a connected P_4 -free graph with maximum degree k then $e(G) \le k^2$.
- 3. Determine the number of spanning trees of the graph $G_{2,n} = (V_{2,n}, E_{2,n})$ with vertex set $V_{2,n} = \{(i,j) : 1 \le i \le 2, 1 \le j \le n\}$ and edge set $E_{2,n} = \{(i,j)(i',j') : |i-i'| + |j-j'| = 1\}.$
- 4. Prove that a tree T has a perfect matching if and only if o(T v) = 1 for any vertex $v \in V(T)$, where o(T v) is the number of components of T v with an odd number of vertices.
- 5. Prove that if G is $2K_2$ -free then $\chi(G) \leq {\omega(G)+1 \choose 2}$. For each positive integer k, construct a graph G_k with $\omega(G_k) = k$ and $\chi(G_k) = {k+1 \choose 2}$.