科目:離散數學

2022, 09, 12

1. (20%) Define the Turán number ex(n, F) of a graph F, and prove that

$$ex(n, K_{k+1}) = \left(1 - \frac{1}{k} + o(1)\right) \binom{n}{2}.$$

What do we know about the Turan number of general graphs F?

2. (20%) A k-chain is a set of k sets satisfying $F_1 \subset F_2 \subset \cdots \subset F_k$. Let $\mathcal{F} \subset 2^{[n]}$ be a family of subsets of [n] that does not contain a k-chain. Prove that

$$\sum_{F \in \mathcal{F}} \binom{n}{|F|}^{-1} \le k - 1,$$

and use this to determine the largest possible size of a $\,k$ -chain-free family of subsets of $\,[n].$

- 3. (20%) State Ramsey's Theorem and prove exponential lower and upper bounds on the diagonal Ramsey number R(t).
- 4. (20%) Let *G* be a graph on *n* vertices with *m* edges, and suppose we have a drawing of *G* in the plane. A *crossing* in the drawing is a pair of vertex-disjoint edges for which the corresponding paths in the drawing intersect.
 - (a) State Euler's Formula for planar graphs and deduce that if $m \ge 4n$, then the drawing must contain a crossing.
 - (b) Improve the bound by showing that the drawing must in fact contain at least $\,m-4n\,$ crossings.
 - (c) By considering, for some appropriate choice of p, a random subgraph of G, where each vertex is retained independently with probability p,

show that the drawing must have at least $\frac{m^3}{1000n^2}$ crossings.

- 5. (20%) A Steiner Triple System over the ground set [n] is a 3-uniform family $\mathcal{F} \in {[n] \choose 3}$ such that every pair in ${[n] \choose 2}$ is contained in exactly one set $F \in \mathcal{F}$.
 - (a) Give examples of Steiner Triple Systems for n = 7 and n = 9.
 - (b) By considering the sets containing an element $x \in [n]$, as well as the total number of sets, prove that if a Steiner Triple System on [n] exists, then $n \equiv 1$ or 3 modulo 6.