臺灣大學數學系 九十八學年度上學期博士班資格考試題 科目:代數

2009.09.18

- (1) (20%)Classify groups of order 4p, where p is a prime greater than 3 and $p \equiv 3 \pmod{4}$. Are they always solvable? (Justify your answer)
- (2) (30%)Let R be a commutative ring with identity and M a finitely generated R-module.
 - (a) Assume that $M \otimes_R \kappa(m) = 0$ for every maximal ideal m, where $\kappa(m)$ is the residue field of the local ring R_m . Show that M = 0.
 - (b) Show that any submodule of a free module of finite rank over a PID is free and thus every finitely generated projective module over a PID is free.
 - (c) Show that if R is a Noetherian ring, then R[[x]] is also a Noetherian ring.
- (3) (20%) Determine the Galois group of x^4-7 over $\mathbb Q$ and $\mathbb Q[\sqrt{7}]$ respectively.
- (4) (15%)Let $s_n := \frac{n(n+1)}{2}$ for $n \in \mathbb{N}$. Show that each positive integer can be written as a sum of finitely many s_n 's.
- (5) (15%)Let $SO(3,\mathbb{R}) := \{A \in GL(3,\mathbb{R}) | A^t A = I, \det(A) = 1\}$. Let A be a matrix in $SO(3,\mathbb{R})$. Show that A is similar to $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$ for some θ .