臺灣大學數學系 九十七學年度下學期博士班資格考試題

科目:代數

2009.02.26

Do all the problems.

- 1. (10 pts.) Classify up to isomorphism all groups of order 33.
- 2. (20 pts.) Show that every finite multiplicative subgroups of a field is cyclic.
- 3. (15 pts.) Show that $\mathbb{C}[x,y,z]/(yz-x^2)$ is NOT isomorphic to $\mathbb{C}[s,t,u]/(u^2-s+t)$.
- 4. (15 pts.) Let F be an algebraically closed field. Show that an ideal $\mathfrak{m} \triangleleft F[x,y]$ is maximal if and only if $\mathfrak{m} = (x-a,y-b)$ for some $a,b \in F$.
- 5. (15 pts.) Let F/K be an algebraic extension over a field K of characteristic p > 0. An element $u \in F$ is said to be purely inseparable over K if there is an integer $n \ge 0$ such that $u^{p^n} \in K$.
 - (a) Give a non-trivial example of purely inseparable extension.
 - (b) Let L be the subset of F of all purely inseparable elements over K. Show that L is a field.
 - (c) Keep the notation as above. Is F separable over L? Verify your answer.
- 6. (15 pts.) Construct a polynomial in $\mathbb{Q}[x]$ such that its Galois group over \mathbb{Q} is S_5 .
- 7. (10 pts.) Let $A \in M(4,\mathbb{R})$ be a 4×4 matrix such that $A^2 = 4A$. Find all possible Jordan forms of A.