臺灣大學數學系

九十七學年度上學期博士班資格考試題

科目:代數

2008.09.19

Notations:

 \mathbb{R} : the field of real numbers.

C: the field of complex numbers.

GL(n, F): the group of non-singular $n \times n$ matrices over the field F. $SO(n, F) := \{A \in GL(n, F) | A^tA = I, \det(A) = 1\}.$

(1) (15 pts) Let

$$\Sigma := \{(x, y) | x = \pm 1, y = \pm 1\} \subset \mathbb{R}^2,$$

$$\Gamma := \{(x, y, z) | x = \pm 1, y = \pm 1, z = \pm 1\} \subset \mathbb{R}^3.$$

The (orientation-preserving) symmetries of Σ (resp. Γ) is defined to be $g \in SO(2,\mathbb{R})$ (resp. $SO(3,\mathbb{R})$) such that $g(\Sigma) = \Sigma$ (resp. $g(\Gamma) = \Gamma$).

Determine the group of symmetries of Σ and Γ .

- (2) (20 pts) Show that for any finite group G, there is a Galois extension with Galois group isomorphic to G.
- (3) (15 pts) Let R be a unique factorization domain. Show that R[x] is a unique factorization domain.
- (4) (20 pts) Let G be a non-abelian group of order 27 such that every non-identity element in it has order 3. Can G be embedded into $GL(2,\mathbb{C})$ as a subgroup? Explain why.
- (5) (10 pts) Let

$$A = \prod_{i=1}^{n} a_i, \quad B = \prod_{j=1}^{m} b_j$$

be products of positive integers > 1. Suppose that the greatest common divisor h of any μ of the $\{a_i\}$ divides at least μ of the $\{b_j\}$. Show that A divides B.

(6) (20 pts) Let $R = \mathbb{C}[x,y]/(y^2 - x^3)$. Find all the prime ideals of R. For a prime ideal \mathfrak{p} of R, one can consider its localization $R_{\mathfrak{p}}$. How many different isomorphic classes of $R_{\mathfrak{p}}$ are there? Explain why.