臺灣大學數學系113學年度第1學期博士班一般資格考試

科目:代數

2024.09.06

All rings and algebras (over a field *k*) are assumed to be commutative.

Problem 1. Prove or disprove the following statements.

- (1) Let $f: R \to S$ be a ring homomorphism. If m is a maximal ideal of S, then $f^{-1}(m)$ is a maximal ideal of R.
- (2) Let E/F and F/K be finite Galois field extensions. If both Gal(E/F) and Gal(F/K) are abelian, then E/K is also a Galois extension with abelian Galois group.
- (3) $SO(2, \mathbb{R})$ is normal in $SL(2, \mathbb{R})$.
- (4) There exists a representation $\rho: G \to \mathrm{GL}(n,\mathbb{C})$ of finite group such that $\mathrm{Tr}(\rho(g)) = \sqrt[3]{2}$ for some $g \in G$.

Problem 2. Let $n \in \mathbb{Z}_{>0}$ and let A be an $n \times n$ matrix with coefficients in \mathbb{C} . Show that

$$det(e^A) = e^{Trace(A)}$$
.

Problem 3. Show that there is no finite simple group of order 72.

Problem 4. Let *p* and *q* be two prime numbers. Compute

$$\mathbb{Z}\left[\frac{1}{p}\right] \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{q}\right].$$

Problem 5. Let

$$z = \cos(2\pi/13) + \cos(10\pi/13).$$

Show that $\mathbb{Q}(z)/\mathbb{Q}$ is a Galois extension of degree 3.

Problem 6. Let *k* be a field. We admit the following statement:

Theorem (Zariski's lemma). Let K/k be a field extension. If K/k is finitely generated as a k-algebra, then [K:k] is finite.

- (1) Let $f: A \to B$ be a k-algebra morphism of finitely generated k-algebras. Show that if m is a maximal ideal of B, then $f^{-1}(m)$ is a maximal ideal of A.
- (2) Let R be a finitely generated k-algebra and let $f \in R$. Show that if f is contained in every maximal ideal of R, then f is nilpotent. (Possible hint: consider the localization map $R \to R_f$.)
- (3) (Bonus: do only after you finish all the problems) Prove Zariski's lemma.