臺灣大學數學系112學年度第1學期博士班一般資格考試

科目:代數

2023, 09, 06

- **1.** Let $V \neq 0$ be a finite-dimensional vector space over a field F and $T: V \to V$ be a linear transformation. Recall that a cyclic vector for T is a vector v in V such that $\{v, Tv, T^2v, \ldots\}$ spans V.
 - (a) (10 points.) Suppose that every nonzero vector of V is a cyclic vector for T. Prove that the characteristic polynomial of T must be irreducible over F.
 - (b) (10 points.) Suppose that the characteristic polynomial of T is irreducible over F. Prove that every nonzero vector v in V is a cyclic vector for T.
- **2.** Let p be a prime and G be a finite p-group.
 - (a) (5 points.) Prove that the center Z(G) of G is nontrivial.
 - (b) (5 points.) Prove that if G/Z(G) is cyclic, then G is abelian.
 - (c) (15 points.) Assume that p is an odd prime. Classify groups of order p^3 up to isomorphisms.
 - (d) (5 points.) Assume that p is an odd prime. Can a non-abelian group of order p^3 be embedded into $GL(2, \mathbb{C})$ as a subgroup? Explain your reasoning.
- 3. (10 points.) Let R be a Noetherian integral domain. Prove that every nonzero element of R can be factored into a product of irreducibles.
- **4.** (a) (5 points.) Let f(x) be a monic irreducible polynomial of degree 4 over \mathbb{Q} such that the Galois group of f over \mathbb{Q} is cyclic of order 4. Prove that the discriminant of f is not equal to the square of a rational number.
 - (b) (20 points.) Let a be a squarefree integer with $a \neq 1$. Prove that $\mathbb{Q}(\sqrt{a})$ is contained in some cyclic extension of degree 4 of \mathbb{Q} if and only if $a = b^2 + c^2$ for some $b, c \in \mathbb{Q}$. (Hint for the "only if" direction: Assume that K/\mathbb{Q} is a cyclic extension of degree 4 such that K contains $\mathbb{Q}(\sqrt{a})$. Let $\alpha \in K$ be a primitive element and f(x) be its irreducible polynomial over \mathbb{Q} . What does Part (a) say about the discriminant of f?)
- 5. Let R be a commutative ring with 1. Suppose that

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

is an exact sequence of R-modules. Let r and s be elements of R such that R is generated by r and s and rA = sC = 0.

- (a) (5 points.) Show that the map $C \to C$ given by $c \mapsto rc$ is an isomorphism.
- (b) (5 points.) Show that the restriction of g to rB gives an isomorphism $rB \simeq C$.
- (c) (5 points.) Show that $B \simeq A \oplus C$.