臺灣大學數學系111學年度第1學期博士班一般資格考試

科目:代數

2022, 09, 12

- 1. (20 points.) Let S_n and A_n denote the symmetric group and the alternating groups on n letters, respectively. Here you may assume the fact that A_n is simple for $n \ge 5$.
 - (a) Prove that if H is a simple subgroup of S_n of order > 2, then H is contained in A_n .
 - (b) Prove that A_6 has no subgroup of index 4.
 - (c) Let G be a group of order 90. Prove that either G has a normal subgroup of order 5 or there is a nontrivial homomorphism from G to S_6 .
 - (d) Prove that there are no simple groups of order 90.
- **2.** (20 points.) Let D be an integral domain. A function $N:D\to\mathbb{Z}_{\geq 0}$ is said to be a Dedekind-Hasse norm on D if
 - (i) N(0) = 0,
 - (ii) N(a) > 0 if $a \neq 0$, and
 - (iii) for any nonzero elements a and b in D, either b|a or there exist elements x and y in D such that 0 < N(xa yb) < N(b).

Also, a nonzero element d of D is said to be a universal side divisor if d is not a unit and has the property that for any a in D, either d|a or there exists a unit u in D such that d|(a-u).

- (a) Prove that if an integral domain has a Dedekind-Hasse norm, then it is a principal ideal domain.
- (b) Prove that if an integral domain is a Euclidean domain, but not a field, then it has a universal side divisor,
- 3. (15 points.) Let F be an extension of \mathbb{Q} of degree 4 that is not Galois over \mathbb{Q} . Prove that the Galois closure of F has Galois group either S_4 , A_4 , or D_8 (the dihedral group of order 8). Prove that the Galois group is dihedral if and only if F contains a quadratic extension of \mathbb{Q} .
- **4.** (15 points.) Let R be an integral domain that is Noetherian and integrally closed. Let K be its field of fractions. Assume that I is a nonzero ideal of R and r is an element of K such that $rI \subseteq I$. Prove that $r \in R$.
- 5. (15 points.) Let R be a commutative Noetherian ring with 1. Prove that the ring R[[x]] (:= $\{\sum_{n=0}^{\infty} a_n x^n : a_n \in R\}$) of formal power series over R is also Noetherian. (*Hint*: Given an ideal I of R[[x]], consider $J_d := \{a \in R : ax^d + \cdots \in I\}$ for $d = 0, 1, 2, \ldots$)
- **6.** (15 points.) Let R be a ring. Let

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

be an exact sequence of R-modules. Prove that there exists an R-module homomorphism $\phi: B \to A$ such that $\phi \circ \alpha = \mathrm{id}_A$ if and only if there exists an R-module homomorphism $\psi: C \to B$ such that $\beta \circ \psi = \mathrm{id}_C$, where id_A and id_C denote the identity maps on A and C, respectively.