臺灣大學數學系 109 學年度上學期博士班資格考試題

科目:代數

2020.09.18

Notations:

N: the set of natural numbers.

 \mathbb{Z} : the ring of integers.

 \mathbb{Q} : the field of rational numbers.

 \mathbb{F}_n : the finite field with n elements.

 $GL_n(F)$: the group of non-singular $n \times n$ matrices over the field F.

 $SL_n(F) := \{ A \in GL_n(F) | \det(A) = 1 \}.$

(1) (30%)

(a) Determine all Sylow p-subgroups of $SL_2(\mathbb{F}_3)$ with p being a prime dividing $|SL_2(\mathbb{F}_3)|$. (Justify your answers)

(b) Find generators for a Sylow p-subgroup of the symmetric group S_{2p} , where p is an odd prime. Show that this is an abelian group of order p^2 .

(c) Find generators for a Sylow p-subgroup of the symmetric group S_{p^2} , where p is a prime. Show that this is a non-abelian group of order p^{p+1} .

(2) (20%)

- (a) Show that if F is a field, then F[[x]] is a PID whose only ideals are 0, F[[x]] and $\langle x^k \rangle$ for $k \in \mathbb{N}$.
- (b) Show that there exists an irreducible polynomial of degree 5 in $\mathbb{Z}_{11}[x]$.

(3) (20%)

- (a) Let M be a finitely generated module over a PID. Show that if N is a submodule of M, then N and M/N are also finitely generated and rank $M = \operatorname{rank} N + \operatorname{rank} M/N$.
- (b) Show that if M is a finitely generated R-module (R: commutative with 1) and IM = M (I: an ideal of R contained in the Jacobson radical of R), then M = 0.

(4) (30%)

- (a) Is every finite group isomorphic to some Galois group Gal(F/K) for some extension F of some field K? Justify your answer.
- (b) Are the following polynomial equations solvable by radicals over \mathbb{Q} ? Explain your answers.
 - (i) $x^n 1 = 0, n \ge 7, n \in \mathbb{N}$.
 - (ii) $x^5 7x^2 + 7 = 0$.