臺灣大學數學系 108 學年度上學期博士班資格考試題 科目:代數

2019.09.12

Notations:

 \mathbb{Z} : the ring of integers.

Q: the field of rational numbers.

(1) (30%)

- (a) Let p, q be prime numbers and let G be a group of order p^2q . Prove or disprove that G is solvable.
- (b) Classify groups of order 4p, where p is a prime greater than 3 and $p \equiv 3 \pmod{4}$.

(2) (20%)

- (a) Let $m \in \mathbb{Z}$ be square-free and let A be the integral closure of \mathbb{Z} in $\mathbb{Q}[\sqrt{m}]$. Show that $A = \mathbb{Z}[(1+\sqrt{m})/2]$ if $m \equiv 1 \pmod{4}$ and $A = \mathbb{Z}[\sqrt{m}]$ otherwise.
- (b) If R is Noetherian, then R[[x]] is also Noetherian.

(3) (25%)

- (a) Show that a module is projective if and only if it is a direct summand of some free module.
- (b) Show that every module over a PID is injective if and only if it is divisible.
- (c) Let M be a flat R-module and $a \in R$ be not a zero-divisor. Show that if ax = 0 for some $x \in M$ then x = 0.

(4) (25%) Let $L = \mathbb{Q}(\cos \pi/9)$ and $K = \mathbb{Q}$.

- (a) Show that L is a splitting field of a separable polynomial f(x) in K[x].
- (b) Show that L/K is not an extension by radicals.
- (c) Find a Galois extension by radicals E/K such that $L \subset E$.
- (d) Find the Galois group Gal(E/K) of your example.