臺灣大學數學系 106 學年度上學期博士班資格考試題

科目:代數

2017.09.15

Problem 1 (20%). Let G be a group. For a map $\phi: G \to \mathbb{Q}$ and $g \in G$, define the new map $\phi^g: G \to \mathbb{Q}$ by

$$\phi^g(h) = \phi(gh) - \phi(h).$$

Show that $(\phi^{g_1})^{g_2} = 0$ for all $g_1, g_2 \in G$ if and only if there is a group homomorphism $\psi: G \to \mathbb{Q}$ such that $\phi - \psi$ is a constant (i.e., $\phi(h_1) - \psi(h_1) = \phi(h_2) - \psi(h_2)$ for all $h_1, h_2 \in G$).

Problem 2 (20%). Let \mathbb{F}_q be a finite field of q elements. Let $G = \operatorname{GL}_2(\mathbb{F}_q)$ be the group of invertible 2×2 matrices with entries in \mathbb{F}_q . Compute the number of conjugacy classes of G and find an element in each conjugacy class.

Problem 3. Let $K \subset \mathbb{C}$ be a quadratic field extension of \mathbb{Q} .

- (1) (10%) Show that there exists $D \in \mathbb{Q}$ such that $K = \{a + b\sqrt{D} \mid a, b \in \mathbb{Q}\}$ as a subset of \mathbb{C} .
- (2) (10%) Let $A = \{x \in K \mid x^2 + ax + b = 0 \text{ for some } a, b \in \mathbb{Z}\}$. Show that A is a free \mathbb{Z} -module and find a basis.

Problem 4.

- (1) (10%) Let p be a prime number and G a subgroup of the symmetric group S_p . Suppose G is transitive and contains a transposition. Show that $G = S_p$.
- (2) (10%) Show that the polynomial $x^5 4x + 2$ is irreducible and determine its Galois group over \mathbb{Q} .

Problem 5 (20%). Let A be a principal ideal domain. Let M be a free module of finite rank over A and $N \subset M$ a submodule. Show that N is free and rank $N \leq \operatorname{rank} M$.