臺灣大學數學系 102 學年度下學期博士班資格考試題

科目:代數

2014.02.20

NOTATIONS:

 \mathbb{F}_p , the finite field with p elements, p a prime.

 $Mat_n(k)$, the ring of $n \times n$ matrices with entries from a commutative ring k. $K[X_1, X_2, \ldots, X_n]$, polynomial ring in variables X_1, X_2, \ldots, X_n over field K.

(1) (20%) Let A be a square matrix with integral entries:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \cdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in \operatorname{Mat}_n(\mathbb{Z})$$

For integral row vector $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{Z}^n$, let $f_A(\mathbf{x}) := \mathbf{x} \cdot A \in \mathbb{Z}^n$.

Show that $f_A(\mathbb{Z}^n)$ is an additive subgroup of finite index inside \mathbb{Z}^n if and only if $\det(A) \neq 0$. If that is the case, prove also that the absolute value of $\det(A)$ equals to the index $(\mathbb{Z}^n : f_A(\mathbb{Z}^n))$.

(2) (15%)Let $P(X) \in \mathbb{R}[X]$ be a non-constant-polynomial without multiple roots. Let $A_0 := P(X), A_1(X) := P'(X)$, i.e. the derivative of P(X). Define a polynomial remainder sequence $A_i(X), 1 \leq i \leq k$:

$$A_{i-1} := Q_i A_i - A_{i+1},$$

with $Q_i(X) \in \mathbb{R}[X]$, deg $A_{i+1} < \deg A_i$, and A_{k+1} being a constant polynomial. Set $\ell_i := \text{leading coefficient of } A_i$, and $d_i := \text{deg } A_i$. Prove that the number of real roots of P(X) is exactly s-r, where r is the number of sign changes in the sequence $\ell_0, \ell_1, \ldots, \ell_{k+1}$, and s is the number of sign changes in the sequence $(-1)^{d_0}\ell_0, (-1)^{d_1}\ell_1, \ldots, (-1)^{d_{k+1}}\ell_{k+1}.$

(3) (20%) Let G be a finite group. Denote by $\mathbb{Q}[G]$ the group algebra of G over the field \mathbb{Q} , this algebra has a vector space basis over \mathbb{Q} indexed by elements of G. Each element of $\mathbb{Q}[G]$ can be written uniquely as formal sum:

$$\sum_{s \in G} a_s s,$$

with $a_s \in \mathbb{Q}$. Multiplication in $\mathbb{Q}[G]$ extends that in G.

Let p be a prime number, and consider $G := \mathbb{Z}/p\mathbb{Z}$ the cyclic group of order p. Let $I \subset \mathbb{Q}[G]$ be the ideal generated by the element $\sum_{s \in G} s$. Prove that:

$$\mathbb{Q}[\mathbb{Z}/p\mathbb{Z}]/I \cong \mathbb{Q}(e^{2\pi i/p}).$$

(4) (15%) Show that the set of all maximal ideals in $\mathbb{C}[X_1, X_2, \ldots, X_n]$ is in natural one-to-one correspondence with the set of points of \mathbb{C}^n .

(5) (15%) Let p be a prime number. Compute the Galois group of the polynomial X^p-2 over \mathbb{Q} .

(6) (15%) Let G be a finite abelian group, \mathbb{Q}/\mathbb{Z} denote the additive group of \mathbb{Q} modulo \mathbb{Z} . Suppose that there is a non-degenerate pairing B which is alternating, i.e $B: G \times G \to \mathbb{Q}/\mathbb{Z}$ is \mathbb{Z} -bilinear satisfying B(x,y) = -B(y,x) for all $x,y \in G$, and if B(x,G) = 0 then x must be 0. Show that the order of G must be a square.