(1) (20%) Let p be a prime number of the form 4k + 3.
(a) Prove that either

$$\left(\frac{p-1}{2}\right)! \equiv 1 \pmod{p}$$
 or $\left(\frac{p-1}{2}\right)! \equiv -1 \pmod{p}.$

(b) The product of all the positive even integers less than p is congruent modulo p to either 1 or -1.

- (2) (20%) Let H and K be normal subgroups of a finite group G. Suppose that $G/H \simeq K$.
 - (a) Give an example to show that G/K need not be isomorphic to H.
 - (b) Prove that if H is simple, then $G/K \simeq H$.
- (3) (20%) Let $R = \mathbb{Z}[2x, 2x^2, 2x^3, \dots] \subset \mathbb{Z}[x].$

(a) Find a prime ideal \mathfrak{m} which is minimal over the ideal (2).

(b) Find a chain of prime ideals $(0) = \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_r = \mathfrak{m}$ such that the length r is maximal.

- (4) (10%) Let R be a commutative ring, I be an ideal in R and M a finitely generated R-module. Suppose that IM = M, prove that (1 + a)M = 0 for some $a \in I$.
- (5) (20%)

(a) Find a Galois extension E over \mathbb{Q} such that $\operatorname{Gal}(E/\mathbb{Q})$ is cyclic of order 16.

(b) Find a Galois extension E over \mathbb{Q} such that $\operatorname{Gal}(E/\mathbb{Q})$ is cyclic of order 8.

(6) (10%) Let $V = \mathbb{R}[x]$ be the real vector space of polynomials. Define the inner product

$$\langle f,g\rangle = \int_0^1 fg\,dx.$$

Let D be the differentiation. Prove that the adjoint D^* of D (i.e. $\langle Df, g \rangle = \langle f, D^*g \rangle$) does not exist.

Typeset by \mathcal{AMS} -TEX