臺灣大學數學系

100 學年度上學期博士班資格考試題

科目:代數

2011.09.16

Notations:

Z: the ring of integers. Q: the field of rational numbers. \mathbb{F}_n : the finite field with *n* elements. $GL_n(F)$: the group of non-singular $n \times n$ matrices over the field *F*. $SL_n(F) := \{A \in GL_n(F) | \det(A) = 1\}.$ Z(G): the center of the group *G*.

- (1) (20%) Determine the order of $SL_2(\mathbb{F}_3)$, exhibit all Sylow *p*-subgroups of $SL_2(\mathbb{F}_3)$ with *p* being a prime dividing $|SL_2(\mathbb{F}_3)|$ and describe the group structure of $SL_2(\mathbb{F}_3)/Z(SL_2(\mathbb{F}_3))$. (Justify your answers)
- (2) (20%) Let F be a field and $I = \langle -x^3 + y, x^2y y^2 \rangle$ be the ideal in the polynomial ring F[x, y]. Determine whether the polynomials $f = x^6 x^5y$ and $g = x^5y xy^5$ are elements of I. (Justify your answers)
- (3) (20%) Let R be a ring. Show that any R-module can be embedded in an injective R-module.
- (4) (20%) Find the Galois groups of the polynomials $x^5 + x^4 4x^3 3x^2 + 3x + 1$ and $x^5 - x - 1$ over \mathbb{Q} respectively. (Justify your answers)
- (5) (20%) Let A_d be the ring of integers in the quadratic field $\mathbb{Q}(\sqrt{d})$ with $d(\neq 1)$ being square free. Show that A_d is a Euclidean domain for d = -2, -3, 3, 5. $(A_d := \{\alpha \in \mathbb{Q}(\sqrt{d}) | \alpha \text{ is integral over } \mathbb{Z}\})$