## 國立臺灣大學數學系 九十六學年度博士班入學考試試題 科目:統計

2007.05.04

- 1. (8%) (12%) Let  $X_1, \dots, X_n$  be a random sample from a population with mean  $\mu$  and variance  $\sigma^2 < \infty$ . Suppose that h(x) has a second derivative  $h^{(2)}(x)$  continuous at  $\mu$  and  $h^{(1)}(\mu) = 0$ . Show that  $\sqrt{n}(h(\bar{X}) h(\mu)) \xrightarrow{p} \Leftrightarrow$  while  $n(h(\bar{X}) h(\mu)) \xrightarrow{d} \frac{1}{2}h^{(2)}(\mu)\sigma^2\chi_1^2$ , where  $\bar{X}$  is the sample mean of  $X_1, \dots, X_n$ .
- 2. (5%) (5%) (10%) Let  $X_1, \dots, X_n$  be a random sample from the uniform distribution  $U(\alpha \beta, \alpha + \beta)$  where  $\alpha$  and  $\beta$  are unknown parameters. Find the uniformly minimum variance unbiased estimators of  $\alpha$ ,  $\beta$ , and  $\frac{\alpha}{\beta}$ .
- 3. Let  $X_1, \dots, X_n$  be a random sample from a population with probability density function  $f(x|\theta,\nu) = \frac{\theta\nu^{\theta}}{x^{\theta+1}} 1_{[\nu,\infty)}(x),$

where  $\theta$  and  $\nu$  are unknown positive parameters.

- (3a) (5%) (5%) Find the maximum likelihood estimators of  $\theta$  and  $\nu$ .
- (3b) (10%) Show that the likelihood ratio test of the null hypothesis  $H_0: \theta = 1$  versus the alternative hypothesis  $H_A: \theta \neq 1$  has critical region of the form  $\{(X_1, \dots, X_n): T(X_1, \dots, X_n) \leq c_1 \text{ or } T(X_1, \dots, X_n) \geq c_2\}$ , where  $0 < c_1 < c_2$  and  $T(X_1, \dots, X_n) = \ln\left(\frac{\prod_{i=1}^n X_i}{(\min\{X_1, \dots, X_n\})^n}\right)$ .
- 4. (8%) (12%) Consider the time series  $X_1, \dots, X_n$  which follows a first order autoregressive model so that  $(X_t \mu) = \phi(X_{t-1} \mu) + \varepsilon_t$ ,  $t = 1, \dots, n$ , where  $\mu = E[X_t]$  and  $\phi$  is an unknown parameter, and  $\varepsilon_t$ ' s  $\stackrel{i.i.d.}{\sim} N(0, \sigma^2)$ . Derive the conditional mean  $E[X_t | X_1, \dots, X_{t-1}]$  and marginal distribution of  $X_t$ .

5. Let  $X_1, \dots, X_n$  be a random sample from a population with the probability density function

$$f(x|\lambda) = \lambda \exp(-\lambda x) 1_{(0,\infty)}(x),$$

where  $\lambda$  is a positive parameter.

- (5a) (10%) Find a uniformly most powerful size  $\alpha$ ,  $0 < \alpha < 1$  test for the null hypothesis  $H_0: \lambda = \lambda_0$  versus the alternative hypothesis  $H_A: \lambda > \lambda_0$ , where  $\lambda_0$  is a known constant.
- (5b) (10%) Find a uniformly most accurate  $(1 \alpha)$  confidence interval for  $\lambda$ .