台灣大學數學系

九十三學年度博士班入學考試題

統計

June 4, 2004

[回上頁]

(1)

A random variable Y has a Lognormal (μ, σ^2) distribution if $\log Y \sim \text{Normal } (\mu, \sigma^2)$. Let

 $Y_i \sim \text{Lognormal} \ (\mu_i, \sigma_i^2), \ i = 1, \cdots, n$ be independent.

(a)

(10 points) Find the distribution and expected value of $\prod_{i=1}^{n} Y_i$.

(b)

(5 points) Find the distribution of Y_1/Y_2 .

(2)

Let X_1, \dots, X_n be independent Bernoulli (p), 0 .

(a)

(7 points) Find the uniformly minimum variance unbiased estimator of p(1-p).

(b)

(14 points) Find a variance stabilizing transformation of the sample mean \bar{X} . Construct an approximate level- α confidence interval of p based on the variance stabilizing transformation.

(3)

Let $X_1, \dots, X_n, n \geq 2$ be independent and identically distributed with density

$$f(x;\mu,\sigma) = \frac{1}{\sigma} \exp\{-(x-\mu)/\sigma\} I_{[\mu,\infty)}(x),$$

where $-\infty < \mu < \infty$ and $\sigma > 0$ are both unknown.

(a)

(14 points) Show that $X_{(1)} = \min\{X_1, \dots, X_n\}$ is complete and sufficient for μ for each fixed value of σ . Find the uniformly minimum variance unbiased estimator of μ .

(b)

(20 points) Suppose that $\mu \leq 0$. Find the maximum likelihood estimates of μ and σ and denote them as $\hat{\mu}_1$ and $\hat{\sigma}_1$. Find the large sample distribution of $\hat{\mu}_1$.

(10 points) Find the likelihood ratio test of $H_0: \mu \leq 0$ versus $H_1: \mu > 0$.

(4)

(c)

(20 points) Suppose X_1, \dots, X_n is a random sample from a discrete distribution with frequency function

$$f(x;\theta) = \frac{1}{\theta+1} \left(\frac{\theta}{\theta+1}\right)^x, x = 0, 1, 2\cdots$$

and zero otherwise, where $\theta > 0$. Find a uniformly most powerful test of $H_0: \theta = \theta_0$ versus $H_1: \theta > \theta_0$.

[回上頁]