臺灣大學數學系

九十二學年度博士班入學考試題

統計

[回上頁]

1. (20 pts.) Let U_1, U_2, \cdots be independent Uniform(0,1) random variables. Let random variable X have the distribution

$$P(X = x) = \frac{1}{(e-1)x!}, \ x = 1, 2, 3, \cdots$$

Find the distribution of $Z = \min\{U_1, \dots, U_X\}$.

2. (30 pts.) Let X_1, \cdots, X_n , $n \geq 2$ be independent and identically distributed with density

$$f(x,\theta) = \frac{1}{\sigma} \exp\{-(x-\mu)/\sigma\}I_{\{x \ge \mu\}},\$$

where $heta=(\mu,\sigma^2),\,-\infty<\mu<\infty,\,\sigma^2>0.$

- 1. Find the maximum likelihood estimates of μ and σ and denote them as $\hat{\mu}$ and $\hat{\sigma}$. Are they consistent? Why?
- 2. Find sequences of numbers $\{a_n\}$ and $\{b_n\}$ such that

$$\frac{a_n(\hat{\mu}-\mu)}{b_n} \stackrel{d}{\longrightarrow} Z,$$

where Z is a random variable. Specify the distribution of Z.

- 3. Find the maximum likelihood estimate of $P_{\theta}(X_1 \ge t)$ for $t > \mu$.
- 3. (20 pts.) Consider the model $Y_i=\mu+e_i,\ i=1,\cdots,n,$ where

 $e_i = (\varepsilon_{i-1} + \varepsilon_i + \varepsilon_{i+1})$ and $\varepsilon_0, \dots, \varepsilon_n$ are i.i.d. with mean zero and variance σ^2 . Find the optimal MSPE predictor of Y_{i+1} based on the past Y_1, \dots, Y_i , which minimizes

$$E(Y_{i+1}-g(Y_1,\cdots,Y_i))^2.$$

among all functions of Y_1, \dots, Y_i .

4. (15 pts.) Let X_1, \dots, X_n be i.i.d. inverse Gaussian with parameters μ and λ , where μ is known. That is, each X_i has density

$$\left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left\{-\frac{\lambda x}{2\mu^2} + \frac{\lambda}{\mu} - \frac{\lambda}{2x}\right\}; \ x > 0, \ \mu > 0, \ \lambda > 0.$$

Find the Uniformly Most Powerful test for $H_0: \lambda \geq \lambda_0$ versus $H_1: \lambda < \lambda_0$.

5. (15 pts.) Let X_1, \dots, X_n and Y_1, \dots, Y_m be independent exponential samples. Each X_i has density $f(x|\theta) = \theta^{-1} e^{-x/\theta} I_{(0,\infty)}(x)$ and each Y_j has density $g(y|\lambda) = \lambda^{-1} e^{-y/\lambda} I_{(0,\infty)}(y)$, where $\theta > 0$ and $\lambda > 0$. Find a confidence interval for

 $\Delta = \theta / \lambda$ with confidence level $1 - \alpha$.

[回上頁]

calbat 2003-07-07