臺灣大學數學系

迴歸分析

Jun, 2006

- 1. (15) Suppose $Y = X\beta + \varepsilon$, where $E(\varepsilon) = 0$ and $cov(\varepsilon) = diag(c_1, \dots, c_n)\sigma^2$.
 - (a) Give three examples and specify $cov(\varepsilon)$ in each case.
 - (b) If $c_i^{-1} = \eta(Ey_i)$ for some unknown function η , how to estimate β , σ^2 and c_i 's?
- 2. (20) Consider

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i1}^2 + \beta_3 (x_{i1} - x) \delta_i + \beta_4 (x_{i1} - x)^2 \delta_i + \varepsilon, \ i = 1, \cdots, n,$$

where $\delta_i = I(x_{i1} > x)$ and ε_i , $i = 1, \dots, n$, are uncorrelated random errors. Give a method to estimate the regression curve when x is not known.

- 3. (25) Suppose $Y = X\beta + \varepsilon$, where X is $n \times k$ dimensional, β is a k-vector, $E(\varepsilon) = 0$ and $\operatorname{cov}(\varepsilon) = \sigma^2 I$, is the correct model. Let $X = (X_1, X_2)$ and $\beta' = (\beta'_1, \beta'_2)$, where X_1 is $n \times p$ dimensional and β_1 is a p-vector, p < k. Suppose we fit the model $Y = X_1\beta_1 + \varepsilon$ and obtain the least squares estimator b_p of β_1 , the estimator s_p^2 of σ^2 , the residual sum of squares RSS_p and the prediction \hat{Y}_p of Y.
 - (a) Compare the bias and covariance matrix of b_1 with those of $b^{(1)}$, LSE of β_1 via the true model.
 - (b) Compute the bias of s_p^2 .
 - (c) Compute $\text{TMSE}(\hat{Y}_p)$, trace of $\text{MSE}(\hat{Y}_p) = \text{cov}(\hat{Y}_p) + \text{Bias}(\hat{Y}_p)\text{Bias}(\hat{Y}_p)'$, and conclude that $\text{TMSE}(\hat{Y}_p)/\sigma^2$ can be estimated by Mallow's C_p

$$C_p = \frac{RSS_p}{s^2} - (n - 2p),$$

where s^2 is the estimator of σ^2 when fitting the correct model.

- 4. (10) Give two variable selection procedures for general linear model $Y = X\beta + \varepsilon$.
- 5. (30) Consider the general linear model $Y = X\beta + \varepsilon$, where $E(\varepsilon) = 0$ and $cov(\varepsilon) = \sigma^2 I$.
 - (a) Describe multicollinearity of X and show its effect on least squares estimation of β .

- (b) Describe the following three remedies of multicollineary and show how they reduce the problem.
 - i. incomplete principal component regression
 - ii. ridge regression
 - iii. add additional observations