臺灣大學數學系

九十四學年度博士班入學考試題

迴歸分析

June, 2005

Suppose that

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \varepsilon_i, \ i = 1, \dots, n,$$

where $\beta = (\beta_0, \beta_1, \dots, \beta_k)'$ are unknown parameters, $X = (x_1, \dots, x_n)'$ with $x_i = (1, X_{i1}, \dots, X_{ik})'$ is a constant design matrix, and the errors $\varepsilon_1, \dots, \varepsilon_n$ are independent with zero mean and variance σ^2 . Assume that X is of full rank. The least squares estimate of β is $b = (X'X)^{-1}X'Y$, where $Y = (Y_1, \dots, Y_n)'$.

- 1. In practice, it may occur that the error variances are unequal.
 - (a) (8%) Describe a way to check unequal variance and a situation where unequal variances is expected.
 - (b) (10%) Describe variance stabilizing transformation to correct for unequal variances, and discuss when it is appropriate.
 - (c) (10%) Describe weighted least squares estimation to correct for unequal variances, and discuss when it is appropriate.
- 2. Consider ridge regression

$$\min_{\beta} \left\{ (Y - X\beta)'(Y - X\beta) + k(\beta'\beta - c) \right\},\,$$

where k and c are positive constants.

- (a) (5%) Find the solution of the ridge regression and denote it as b_k .
- (b) (8%) Find the mean and covariance of b_k .
- (c) (10%) Find the necessary and sufficient condition for b_k to have smaller mean squared error matrix than b.
- (d) (4%) Give one reason/interpretation for doing ridge regression.
- 3. Consider shrinkage estimator $b_{\rho} = (1 + \rho)^{-1}b$, where ρ is a positive constant.
 - (a) (8%) Find the mean and covariance of b_{ρ} .
 - (b) (8%) Find the necessary and sufficient condition for b_{ρ} to have smaller mean squared error matrix than b.
 - (c) (4%) Give one reason/interpretation for doing shrinkage regression.

- 4. Consider the Box-Cox transformation of the response variable.
 - (a) (5%) Write down the transformation.
 - (b) (10%) Discuss purposes of the transformation.
 - (c) (10%) Give a data adaptive procedure to determining the parameter in the transformation.