國立臺灣大學數學系 九十六學年度博士班入學考試試題

科目:機率論

2007.05.04

All random variables considered here are given on a probability space (Ω, \mathcal{F}, P) .

- 1. (25 pts) Let X_1, X_2, \ldots be i.i.d. with $E(X_1) = 0$ and $E|X_1|^p < \infty$ where $1 . If <math>S_n = X_1 + X_2 + \cdots + X_n$, then $S_n/n^{1/p} \to 0$ a.s.
- 2. (20 pts) Let X_1, X_2, \ldots be i.i.d. with $X_i \geq 0$, $E(X_i) = 1$, and $var(X_i) = 1$ $\sigma^2 \in (0,\infty)$. Determine the distribution of $\sqrt{S_n} - \sqrt{n}$ as $n \to \infty$ where $S_n = X_1 + X_2 + \cdots + X_n.$
- 3. (30 pts) Suppose we start out at time 2 with one black ball and one white ball in an urn. Then at each time we draw a ball at random from the urn, and replace it together with a new ball of the same color. Let X_n denote the number of white balls at time n. Write $M_n = X_n/n$ which is the fraction of white balls at time n.
 - (a) Determine $E(M_{n+1}|X_{2,n})$. Here $X_{2,n}$ denote the portion X_2, X_3, \ldots, X_n of the process from time 2 up to time n.

$$E\left(\frac{X_{n+1}}{n+1}|X_{2,n}\right) = \frac{1}{n+1}\left[(X_n+1)\frac{X_n}{n} + X_n\left(1 - \frac{X_n}{n}\right)\right] = X_n/n = M_n.$$

- (b) Show that as the time $n \to \infty$, the fraction M_n approaches a limit with probability 1.
- (c) What is the distribution of this limiting fraction?
- 4. (25 pts) Let Y_1, Y_2, \ldots be nonnegative i.i.d. random variables with $EY_m = 1$ and $P(Y_m = 1) < 1$.
 - (a) Show that $X_n = \prod_{m \le n} Y_m$ defines a martingale.
 - (b) Show $X_n \to 0$ a.s.
 - (c) Show that $(1/n) \log X_n \to c < 0$.