臺灣大學數學系

九十五學年度博士班入學考試題

機率

Jun, 2006

ENTRANCE EXAM FOR PHD PROGRAM JUNE 2, 2006

All random variables are given on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$.

1. (30 pts)

(a) For any random variable U show that

$$\sum_{n=1}^{\infty} \mathbf{P}(|U| \ge n) \le \mathbf{E}[|U|] \le \sum_{n=0}^{\infty} \mathbf{P}(|U| \ge n).$$

Note that $\mathbf{E}[|U|]$ can be infinite.

(b) For a sequence of independent, identically distributed random variables (V_n) , show that $\frac{V_n}{n} \to 0$ almost surely (a.s.) as $n \to \infty$ if and only if $\mathbf{E}[|V_1|] < \infty$.

2. (20 pts)

- (a) Show that if $X_n \to X$ in probability then X_n converges to X weakly.
- (b) Conversely, show that if X_n converges weakly to a constant $c \in \mathbb{R}$ then $X_n \to c$ in probability.
- 3. (30 pts) Let $Y_n, n \ge 1$, be a sequence of independent random variables with $\mathbf{E}[Y_n] = 0, \mathbf{E}[Y_n^2] < \infty$. Denote $M_n = Y_1 + \cdots + Y_n$ and sub σ -fields $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n), n \ge 1$, and $\mathcal{F}_0 = \{\Omega, \emptyset\}$.
 - (a) Prove that M_n is a martingale and M_n^2 is a sub-martingale, both are with respect to the filtration $(\mathcal{F}_n)_{n\geq 1}$.
 - (b) Find all possible sequence of random variables $A_n \in \mathcal{F}_{n-1}$, $n \ge 1$, such that $A_{n+1} \ge A_n$, and $M_n^2 A_n$ is a mean zero \mathcal{F}_n -martingale.
- 4. (20 pts) Let Z be a random variable with $\mathbf{E}[|Z|] < \infty$, and $\mathcal{G}_n, n \ge 1$, be any increasing sub σ -fields of \mathcal{F} .
 - (a) Show that $Z_n = \mathbf{E}[Z | \mathcal{G}_n], n \ge 1$, is a uniformly integrable \mathcal{G}_n -martingale.
 - (b) Does Z_n converge in L^1 ? Does Z_n converge almost surely? What is the limit if Z_n converges?