臺灣大學數學系

九十二學年度博士班入學考試題

機率

<u>[回上頁]</u>

1.(20 pts) (a) Let X_n, Y_n be two sequences of r.v.'s defined on a probability space (Ω, F, P) . If $\sum_n P\{X_n \neq Y_n\} < \infty$, then prove that $\frac{1}{n} \sum_{j=1}^n (X_j - Y_j)$ converges almost surely. (b) Under the condition of (a), prove that $\frac{1}{n} \sum_{j=1}^n X_j$ converges or diverges in the same way as $\frac{1}{n} \sum_{j=1}^n Y_j$. pt 2.(20 pts) (a)Let X_n be a sequence of independent and identically distributed r.v.'s which are positive and not identically zero a.s. Regard X_n as lifespan of certain object undergoing a process of renewals. Given a time instant t, let N(t) denote the number of renewals up to and including the time t. Let $S_n = \sum_{j=1}^n X_j$. Express the event $\{N(t) = n\}$ in terms of S_n .

(b) Use SLLN of S_n to give the limit $\lim_{t\to\infty} \frac{N(t)}{t}$, pt 3.(20 pts) Let X have the normal distribution N(0, 1). Find the distribution function, probability density function and characteristic function of X^2 . pt 4.(20 pts) Define a double array of r.v.'s as follows. For each $n \ge 1$ let there be k_n independent r.v.'s X_{nj} , $1 \le j \le k_n$, where $k_n \to \infty$ as $n \to \infty$. Assume that $EX_{nj} = 0$, $\sum_{j=1}^{k_n} \sigma^2(X_{nj}) = 1$, and that $\sum_{j=1}^{k_n} E|X_{nj}|^3 \to 0$ as $n \to \infty$. Let $S_n = \sum_{j=1}^{k_n} X_{nj}$, Use characteristic functions to show roughtly that S_n converges in distribution to N(0, 1). pt 5.(20 pts) Let X_n be a sequence of r.v.'s and F_n be an increasing sequence of sub-sigma algebras of F. Assume that each X_n is measurable with respect to F_n . (a) What is meant by optional r.v.(stopping time) for a positive integer valued r.v. α ? What is meant by the optional(stopped) r.v. X_α ? What is meant by the optional(stopped) sigma algebra F_α generated by α ?

(b) Let α, β be two bounded optional r.v.'s such that $\alpha \leq \beta$. Prove that if X_n, F_n is a martingale, then so is $X_{\alpha}, X_{\beta}, F_{\alpha}, F_{\beta}$.

[回上頁]