臺灣大學數學系

九十學年度博士班入學考試題

偏微分方程式

[回上頁]

There are problems A. to F. You have to do 4 out of the 6 problems.

Α.

Let $\Omega \subset \mathbb{R}^2$ be a domain and Γ be a \mathbb{C}^1 curve inside Ω such that $\Omega - \Gamma$ consists of two disjoint subdomains Ω_1 and Ω_2 . A function $g \in \mathbb{C}(\Omega - \Gamma)$ is said to have a jump [g](P) at a point $P \in \Gamma$ if both limits in the following formula exists

$$[g](P) = q_{\in \Omega_1} Pg(Q) - q_{\in \Omega_2} Pg(Q).$$

Consider a linear equation $a(x, y)u_x + b(x, y)u_y = c(x, y)$ where a, b and c are C^1 functions defined on Ω . Assume that u(x, y) defined on Ω satisfies either (a)

 $u \in C^1(\Omega - \Gamma)$ and the jump [u] exists along Γ , or (b) $u \in C^1(\Omega - \Gamma) \cap C(\Omega)$ and both $[u_x]$ and $[u_y]$ exist along Γ . Prove that u is a weak solution of the linear equation, i.e. for all C^{∞} function $\phi(x, y)$ in Ω with compact support, we have

$$\int_{\Omega} [u(a\phi)_x + u(b\phi)_y + c\phi] dx dy = 0,$$

iff Γ is a charateristic curve of the equation.

Β.

Find the field of the Monge cones for the equation $u^2(u_x^2 + u_y^2 + 1) = 1$. Then solve the Cauchy problem with the Cauchy data u = 1/2 on y = x. If the caustic curve exists for this solution, find it explicitly.

Let $\Omega = \{(x, y) \mid 0 < y < 1, 0 < x < \infty\}$

(1)

Prove that the boundary value problem (BVP) $\Delta u = 0$ on Ω ; u(x, 0) = u(x, 1) = 0 for $0 < x < \infty$; u(x, y) is bounded in Ω . has a unique solution if u(0, y) = f(y) is a given continuous function in $0 \le y \le 1$. Find this solution explicitly.

(2)

Must the BVP have a unique solution if $u_x(0, y) = f(y)$ is a given continuous function in $0 \le y \le 1$? Find all it's solution if they exist.

D.

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary $\partial \Omega$. Conseder the Dirichlet problem for $u \in C^2(\Omega)$

$$\Delta u = 0$$
 on Ω ; $u(x) = f(x)$ given on $\partial \Omega$.

Suppose that $f: \partial \Omega \to R$ is continuous except at $p_0 \in \partial \Omega$ and $u \in C(\overline{\Omega} - \{p_0\})$

.Show that, if u is bounded, then this solution of the Dirichlet problem is the unique solution. However, if u is possible unbounded, then the Dirichlet problem may have more than one solution.

Ε.

Consider the Cauchy problem for the heat equation

$$u_t = \triangle u + f(x)$$
 for $x \in \mathbb{R}^n$, $t > 0; u(x, 0) = 0$ for $x \in \mathbb{R}^n$

u(x,t) is bounded on for any fixed a > 0.

(1)

For a fixed point $y \in \mathbb{R}^n$, find the solution u(x,t) if $f(x) = \delta(x-y)$. Show

that $\lim_{t\to\infty} u(x,t)$ is the heat kernel at y.

(2)

Find condition on f(x) such that the unique solution u(x,t) has the limit

$$t \infty u(x,t) = U(x)$$
, for each $x \in \mathbb{R}^n$

with $U \in C^2(\mathbb{R}^n)$. Moreover, show that U(x) must satisfy $\triangle U + f(x) = 0$ on

 R^n and $lim_{|x|\to\infty}U(x)=0$.

_	
_	
-	

Solve the following wave equation

 $u_{tt} = \Delta u - m^2 u$ for $x \in R^3$, t > 0; u(x, 0) = f(x), $u_t(x, 0) = g(x)$ for $x \in R^3$ where m > 0 is a constant. If f(x) and g(x) are of compact support, what is the domain of dependence of u(x,t)? Do we have the phenomena of the Huygen's principle for this equation?

[回上頁]