台灣大學數學系

九十三學年度博士班入學考試題

離散數學

June 4, 2004

[回上頁]

1.

(20 %) Solve the following recurrence relations.

(a)

$$f(n+1) = 2f(n) + f(n-1) - 2f(n-2), \ f(0) = f(1) = 1, \ f(2) = 2$$

(b)

$$f(n+1) = 1 + \sum_{i=0}^{n} f(i), f(0) = 1.$$

2.

Suppose \mathfrak{F} is a family of subsets of $\{1, 2, ..., n\}$ such that $A \not\subseteq B$ and $B \not\subseteq A$ for any two distinct $A, B \in \mathfrak{F}$. Prove that $|\mathfrak{F}| \leq {n \choose \lfloor n/2 \rfloor}$. Moreover, prove that if equality holds, then \mathfrak{F} consists of all subsets of $\{1, 2, ..., n\}$ of size $\lfloor n/2 \rfloor$, or all subsets of size $\lceil n/2 \rceil$ (these are the same if n is even).

3.

(20 %) (a) Prove that every nontrivial tree has at least two maximal independent sets, with equality only for stars. (Note: maximal \neq maximum.) (b) Let T be a tree in which all

vertices adjacent to leaves have degree at least three. Prove that ${\cal T}$ has some pair of leaves with a common neighbors.

4.

(20 %) A dominating set in a graph G = (V, E) is a subset D of V such that every vertex

in V - D is adjacent to some one vertex in D. The *domination number* $\gamma(G)$ of a graph G

is the minimum size of a dominating set in G. A dominating set is *independent* if every two distinct vertices in it are not adjacent.

(**a**)

Prove that if the diameter of G is at least 3, then $\gamma(\overline{G}) \leq 2$.

(b)

Prove that every claw-free graph, that is G contains no $K_{1,3}$ as an induced subgraph, has an independent dominating set of size $\gamma(G)$.

(20%) (a) Prove that a graph G = (V, E) is chordal if and only if V has an ordering v_1, v_2, \ldots, v_n such that i < j < k, $v_i v_j \in E$, $v_i v_k \in E$ imply $v_j v_k \in E$. (b) Prove that chordal graphs are perfect.

```
[回上頁]
```