國立臺灣大學數學系九十七學年度博士班入學考試試題

科目:實分析

2008.04.25

1. (30 pts)

- (1) What is (Lebesgue) dominated convergence theorem (DCT)? (5 pts)
- (2) What is Fatou's Lemma (FL)? (5 pts)
- (3) Is it possible to prove (FL) by (DCT)? Prove your answer (10 pts).
- (4) Is it possible to prove (DCT) by (FL)? Prove your answer (10 pts).
- # 2. (30 pts) Let E be a measurable set with finite Lebesgue measure. For $p \geq 1$, define

$$N_p[f] = \left(\frac{1}{|E|} \int_E |f|^p\right)^{1/p}, \quad \forall f \in L^p(E).$$

Can $N_p[f] \leq N_q[f]$ for p < q? (10 pts) Can $N_p[f+g] \leq N_p[f] + N_p[g]$ for $f, g \in L^p(E)$? (10 pts) What is the limit $\lim_{p\to\infty} N_p[f] =$? (10 pts) Prove or disprove all your answers.

3. (20 pts)

- (1) Can $L^2(\mathbb{R}^n) \subset L^1(\mathbb{R}^n), \forall n \geq 1$? (5 pts) Prove your answer.
- (2) Let Ω be a bounded smooth domain in \mathbb{R}^n , $n \geq 2$. Let $\{f_k : k = 1, 2, 3, \cdots\}$ be a bounded sequence in $L^2(\Omega)$. Can the sequence $\{f_k\}$ have a convergent subsequence in $L^1(\Omega)$? Prove or disprove your answer. (15 pts)
- # 4. (20 pts) Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in $L^2(\Omega)$ such that as $n \to \infty$, f_n converges to 0 in $L^2(\Omega)$ weakly, to 0 in $L^{3/2}(\Omega)$ strongly, where Ω is a bounded domain in \mathbb{R}^2 . Can f_n converge to 0 strongly in $L^2(\Omega)$? Prove or disprove your answer.