台灣大學數學系

九十三學年度博士班入學考試題

實分析

June 4, 2004

[回上頁]

(1)

Let $Q = (0, 1) \times (0, 1) = \{(x, y) | 0 < x < 1, 0 < y < 1\}$ be an open square,

f(x, y) > 0 be a positive measurable function. For almost all x, $\int_0^1 \int (x, y) dy$ exists, and the treated integral $\int_0^1 dx (\int_0^1 f dy)$ exists. Similarly assume $\int_0^1 dy (\int_0^1 f(x, y) dx)$ exists. Can you prove they are the same ? If $g(x, y) \in C^1(Q)$ is a continuously differentiable real-valued function on Q, Can you prove $\int_0^1 \int_0^1 g dy dx = \int_0^1 \int_0^1 dy dx$? pt

(2)

Sin $\pi z = \pi z (1 - z^2)(1 - \frac{z^2}{4})(1 - \frac{z^2}{9}) \cdots$ If z = x + io has no imaginary part, can you prove this infinite product converges uniformly for $z \in R$? If not, can you take logarithm and

differentiate term by term to get cot
$$\pi z = \frac{1}{\pi^2} + \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{2z}{z^2 - n^2}$$
 (20/100) pt

(3)

Let $f(x) \in L^2(R)$ be a complex valued square integralle function, $\int_{-\infty}^{\infty} |f|^2 dx < \infty$. Can you prove its Fourier transform $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{i\xi x} dx$ exists for almost all $\xi \in R$? If yes, is $\hat{f}(\xi)$ an L^2 function too? (20/100) pt

(5)

Let
$$\alpha = \frac{1}{2}$$
 and for each $x \in [-1, 1]$ assume $f(x)$ satisfies the hölder condition
 $|f(x) - f(y)| \le M|x - y|^{\alpha}$ for all $-1 \le y \le 1$ and $M = M(x, f)$ is independent of y . Can you prove there is actually an $H = H(f)$ independent of both x and y so that
 $|f(x) - f(y)| \le H \cdot |x - y|^{\alpha}$ for all $(x, y) \in [-1, 1] \times [-1, 1]$?(20/100) pt

Let H be a hilbert space and $K \subset H$ a closed subsphee, If $x \notin K$ and d=dist $(X,K) \geqq 0$

Let k_1, k_2, \cdots be a requence in K so that disk $(x, k_n) \longrightarrow limit = d$. Can you find a convergent subsequence $k_{i_j} \longrightarrow limit = k_{\infty} \in K$? If H is a Brunch space instead of hilbert space. can you still find such a convergent subsequence in a closed subspace k?(20/100)

[回上頁]