臺灣大學數學系

九十二學年度博士班入學考試題

分析

[回上頁]

A.

Determine which of the following functions is in $L^{1}(E)$.

$$x^{\alpha}sin\frac{1}{x}, \quad x \in E = (0,1]; \frac{x^2 - y^2}{(x^2 + y^2)^2}, \quad (x,y) \in E = (0,1] \times (0,1]$$

where α is a positive constant. Then give an example of a bounded continuous function $f:(0,\infty) \to \mathbb{R}$ such that $\lim_{x\to\infty} f(x) = 0$, but $f \notin L^p((0,\infty))$ for any p > 0.

Β.

Denote I = [0, 1]. Let $I^2 = I \times I \subset \mathbb{R}^2$ be the closed unit square.

$$f = f(x, y) : I^2 \to \mathbb{R}$$

is a function defined on I^2 .

(a)

If f(x, y) is continuous in x for each fixed $y \in I$, and f(x, y) is continuous in y for each fixed $x \in I$, must f be continuous in I^2 ? Must $f \in L^1(I^2)$?

(b)

If f(x, y) is continuous almost everywhere, and bounded in I^2 , prove that the following two Lebesgue iterated integrals are equal:

$$\int_{I} \int_{I} f(x, y) dy dx = \int_{I} \int_{I} f(x, y) dx dy.$$

(C)

If f(x, y) is Lebesgue measurable in x for all fixed $y \in I$, and f(x, y) is continuous

in y for almost all fixed $x \in I$, prove that f is Lebesgue measurable in I^2 .

Moreover, must the conclusion be true if we only assume that f(x, y) is Lebesgue

C.

Let $f \in L^p(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$ where p and q are positive constants with $\frac{1}{p} + \frac{1}{q} = 1$. Prove that convolution f * g exists, and is continuous in \mathbb{R}^n , and lim

 $_{|x|\to\infty}f * g(x) = 0.$

Prove aslo that f * g is uniformly continuous in \mathbb{R}^n .

D.

Let I = (a, b) be an open interval in \mathbb{R} . $f_n : I \to \mathbb{R}(n = 1, 2, 3, \cdots)$ is a sequence of differentiable functions such that $\lim_{n\to\infty} ||f_n - f||_{L^3} = 0$ for some $f : I \to \mathbb{R}$, and $f'_n(x)$ is Cauchy in $L^3(I)$. Prove that f is absolutely continuous in I, and its derivative $f' \in L^3(I)$. Moreover, prove that $f \in L^3(I) \cap L^\infty(I)$.

[回上頁]

calbat 2003-07-07