臺灣大學數學系

九十一學年度博士班入學考試題

分析

[回上頁]

1.(20 pts) (a) Let $\mathfrak{C}, \mathfrak{B}, \mathfrak{L}$ denote respectively the class of all continuous, Borel measurable, Lebesgue measurable functions on [0, 1]. Prove that $\mathfrak{C} \subset \mathfrak{B} \subset \mathfrak{L}$.

(b) For which class \mathcal{A} of $\mathfrak{C}, \mathfrak{B}, \mathfrak{L}$, the following statement holds:

$$f(x) = g(x), a.e. x$$
, and $f \in \mathcal{A} \implies g \in \mathcal{A}$

Give reason(prove or give a counter-example). pt 2.(20 pts) (a) Let $\{f_n\}$ be a sequence of nonnegative measurable functions on [0, 1]. Prove that

$$\int_0^1 \liminf_{n \to \infty} f_n(x) dx \le \liminf_{n \to \infty} \int_0^1 f_n(x) dx.$$

(b) Can ≤ in (a) be replaced by =? Give reason. pt 3.(20 pts) (a) If f(x), x ∈ [0, 1], is of bounded variation, prove that f'(x) exists a.e. x and that x → f'(x) is measurable.
(b) Give an *suitable* upper bound for

$$\int_0^1 f'(x) dx$$

(c) Can the upper bound in (b) become an equality? Give reason. pt 4.(20 pts) (a) Let $f_n \longrightarrow f$ in $L^p[0, 1]$, $1 \le p < \infty$. Let g_n be a sequence of measurable functions such that $|g_n(x)| \le M < \infty$, $\forall n \forall x$, and $g_n \longrightarrow g$ a.e. Prove that $g_n f_n \longrightarrow gf$ in $L^p[0, 1]$. (b) Does (a) hold when $p = \infty$? Give reason. pt 5. Consider

$$I(\lambda) = \int_0^\infty \frac{x^{\lambda-1}}{1+x} dx, \quad 0 < \lambda < 1.$$

(a) Prove that $I(\lambda)$ exists, as a finite positive number.

(b) Evaluate $I(\lambda)$ by the residue method. You need to proceed step by step.