臺灣大學數學系

九十學年度博士班入學考試題

分析

[回上頁]

1.

(a)

- Show that the Cantor Set is a nowhere dense perfect subset of [0, 1].
- (b) Let $f : [0,1] \rightarrow [0,1]$ be the Cantor-Lebesgue function. Find the length of the curve y = f(x), $0 \le x \le 1$ (By definition).

2.

Let f be a real-valued differentiable function on (a, b)

(a)

Does f' have to be Lebesgue measurable ? Justify your answer.

(b)

If f' is of bounded variation. Show that f' is continuous on (a, b)

3.

```
Let f_n, f \in L^2(R) for all n.

(a)

If f_n \to f a.e. and ||f_n||_2 \le M \forall n, show that f_n \to f weakly in L^2(R).

(b)
```

If $f_n o f$ weakly in $L^2(R)$, show that there is a constant M such that $\|f_n\|_2 \le M orall n = 1, 2 \dots$

4.

```
Show that
```

(a)

C[0, 1] is separable (i.e. \exists countable dense subset).

(b) $L^{\infty}(0,1)$ is not separable.

5.

(a)

Let $f \in L^1[0,1]$ and $F(x) = \int_0^1 f(t) \sin(xt) dt$, for all real x. Show that F(x) is differentiable for each x.

(b)

Let Y = C[0, 1] with supremum norm and $X = C^1[0, 1]$ (a subset of Y), is the mapping $f(x) \to f'(x)$ from X into Y continuous? Justify your answer.

6.

We call f a unit function if f is analytic in U = (z : |z| < 1), continuous in $D = (z : |z| \le 1), |f(z)| \le 1$ in D. and |f(z)| = 1 when |z| = 1. Prove the following statement: (a)

If f is a unit function and has no zeros in U, then f is a constant.

(b)

If f is a non-constant function, then there exist z_1, z_2, \ldots, z_n in U and a real constant k such that

$$f(z) = \exp(ik) \prod_{j=1}^{n} \frac{z_j - z}{1 - \bar{z}_j z}$$

[回上頁]