臺灣大學數學系

八十九學年度博士班入學考試題

分析

[回上頁]

Choose 4 from the following 6 problems.

1.

(12) Let f be positive and measurable. Show that

$$\int_0^1 f dx \le (\int_0^1 \frac{1}{f} dx)^{\frac{1}{2}} (\int_0^1 f^4 dx)^{\frac{3}{8}}$$

(b)

(a)

(13) Let f be differentiable and $\frac{d}{dx}f \leq 0$. Show that

$$\int_0^1 x f(x) dx \le \int_0^1 x dx \int_0^1 f(x) dx$$

2.

Let
$$f_k(x) = \int_{R^2} \frac{k}{|y|} \frac{1}{(1+|y-kx|^2)^2} dy$$
 and $c = \int_{R^2} \frac{1}{(1+|y|^2)^2} dy$
(a)
(12) Show that $\liminf_{k \to \infty} f_k(x) \ge \frac{c}{|x|}$ for $x \neq 0$.

(a)

(13) Show that
$$\limsup_{k \to \infty} f_k(x) \le \frac{c}{|x|}$$
 for $x \ne 0$.

3.

(13) Assume
$$f$$
 is Lipschitz on $[0,1]$, i.e. $\exists L > 0$ such that
 $|f(x) - f(y)| \le L |x - y|$, and $f(0) = 0$. Let $g(x) = 0$. Let
 $g(x) = x^{-\frac{1}{2}}f(x)$. Show that $g'(x) = \frac{d}{dx}g(x)$ exists a.e. on $[0,1]$,
 $\int_0^x g'(t)dt = g(x)$ and $g(x)$ is absolutely continuous on $[0,1]$.

(b)

(12) Find a Lipschitz function f(x) on [0,1] with f(0) = 0 such that $x^{-1}f(x)$ is not absolutely continuous on [0,1].

4.

Let m(E) denote the Lebesgue measure of $E \subset \mathbb{R}^n$. $\{f_k\}$ is said to converge in measure on E to f if for every $\varepsilon > 0$,

$$\lim_{k\to\infty} m(\{x\in E: |f_k(x)-f(x)|>\varepsilon\})=0.$$

Assume $f_k, k = 1, 2, \cdots$, and f are measurable and finite on E.

(a) (12) Show that if $m(E) < \infty$ and $f_k \to f$ a.e. on E, then $f_k \to f$ in measure on E.

(b) (13) If $f_k \to f$ in measure on E, show that there is a subsequence f_{k_j} such that $f_{k_j} \to f$ a.e. on E.

5.

Let $L^2[0,1]$ denote the real L^2 space on [0,1] with inner product $\langle f.g \rangle = \int_0^1 fg \ dx$. Let $\{\phi_k\}_{k=1}^{\infty}$ be an orthonormal system in $L^2[0,1]$. Define $c_k(f) = \int_0^1 f\phi_k \ dx$ for $f \in L^2[0,1]$. (a) (13) Show that $\sum_{k=1}^{\infty} |c_k(f)|^2 \le ||f||_{L^2}^2$.

(b)

(12) Let $\{a_k\}_{k=1}^{\infty}$ be a sequence with $\sum_{k=1}^{\infty} a_k^2 < \infty$. Show that there is a $g \in L^2[0,1]$ such that $a_k = c_k(g)$.

Let m denote the two dimensional Lebesgue measure.

(12) Let f be a continuous function on [0,1] and $G(f) = \{(x, f(x)) \in \mathbb{R}^2 : 0 \le x \le 1\}$. Show that m(G(f)) = 0.

(a)

(13) Let
$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$$
, $0 \le t \le 1$ be a continuous curve in \mathbb{R}^2 and $C = \{(x, y) \in \mathbb{R}^2 : x = \phi(t), y = \psi(t), 0 \le t \le 1\}$. For a partition $\Gamma = \{0 = t_0 < t_1 < \cdots < t_m = 1\}$, define

$$l(\Gamma) = \sum_{i=1}^{m} \{ (\phi(t_i) - \phi(t_{i-1}))^2 + (\psi(t_i) - \psi(t_{i-1})^2) \}^{\frac{1}{2}}.$$

Show that if $\sup_{\Gamma} l(\Gamma) < \infty$, then m(C) = 0.

[回上頁]