臺灣大學數學系

八十七學年度博士班入學考試題

分析

[回上頁]

There are problems A to D with a total of 100 points. **Please write down your proof or computational steps clearly on the answer sheets.**

A.

Let *I* be an interval in the real line. $f_n(n = 1, 2, 3, \dots)$ is a sequence of real-valued functions defined on *I*. *f* is also defined on *I*.

(a)

Define the following terminologies (using $\epsilon - \delta$ definition in (1) and (2)). Each has 4 points.

(1). $\lim_{n \to \infty} f_n = f$ pointwise in *I*; (2). $\lim_{n \to \infty} f_n = f$ uniformly in *I*;

(3). f_n is uniformly bounded in I.

(b)

Determine which of the following statements is true or false. If true, prove it. Otherwise, give a counterexample. Each has 6 points.

(1)

Suppose $\lim_{n\to\infty} f_n = f$ uniformly in *I*, and *f* is continuous in *I*. Then f_n is also continuous in *I* for all *n* large enough.

(2)

Let $\lim_{n\to\infty} f_n = f$ uniformly in I. Suppose $x_n \in I$ is a sequence such that $\lim_{n\to\infty} x_n = a$ with $a \in I$. Then $\lim_{n\to\infty} f_n(x_n) = f(a)$.

(3)

 $\lim_{n\to\infty} f_n = f \text{ uniformly in } I \text{ iff } \lim_{n\to\infty} (f_n(x_n) - f(x_n)) = 0 \text{ for all}$ sequence x_n of numbers in I.

(4)

Let $\lim_{n\to\infty} f_n = f$ uniformly in I. Then f is bounded in I iff there exists an integer N such that $\{f_n | n > N\}$ is uniformly bounded.

(C)

(14 points) Assume that $\lim_{n\to\infty} f_n = f$ pointwise in the bounded interval I. Suppose that each f_n is continuously differentable such that $\int_I |f'_n(x)|^3 dx$ is a bounded sequence. Prove that f_n is uniformly bounded, and $\lim_{n\to\infty} f_n = f$ uniformly in I.

Β.

Define $f(x) = \int_0^\infty \frac{e^{-t}(1-\cos xt)}{t^2} dt$ for real x variable. Find the domain of f. Show that f is twice differentiable in its domain. Find the value of f. (15 points)

C.

Let Γ be an oriented closed curve in the plane without passing through points (-1, 0) and (1, 0). Compute the line integral

$$\int_{\Gamma} \frac{2(x^2 - y^2 - 1)dy - 4xydx}{(x^2 + y^2 - 1) + 4y^2}.$$

Prove your answer. (15 points)

D.

Let f(x, y) be a continuously differentiable function defined in the disc

$$D = \{(x,y) | x^2 + y^2 < 1\}$$
. $f(0,0) = 0$ and $|f(x,y)| \le 1$ in D.

(a)

(12 points) Prove that there exists a unique continuous function $z = \phi(x, y)$ defined on D such that $|\phi(x, y)| \leq 1$ and $z^3 + z(x^2 + y^2) = f(x, y)$ on D. Moreover, show that $\phi(x, y)$ is continuously differentiable in D except possibly at (0, 0).

(b)

(8 points) When $f(x, y) = (x^2 + y^2)^2$, prove that ϕ is continuously differentiable at (0, 0). However, when $f(x, y) = (x^2 + y^2)^{3/4}$, ϕ is not differentiable at (0, 0)

<u>[回上頁]</u>