臺灣大學數學系

九十二學年度博士班入學考試題

代數

[回上頁]

1

Show that $n^{13} - n$ is divisible by 2730 for any integer *n*.

2

Let T be a linear transformation on a finite dimensional vector space over k. Show that for any irreducible polynomial $f(t) \in k[t]$, if f(T) is not onto, then f(t) divides the characteristic polynomial of T.

3

4

Let A be an $n \times n$ matrix over a field k with n > 1, and adj A be the adjoint of A.

(a)

If A is invertible, prove that $\operatorname{adj}(\operatorname{adj}(A)) = (\operatorname{det}(A))^{n-2}A$.

(b)

Does the statement in (a) hold for singular matrix A?

Let p be a prime and $(\mathbb{Z}/(p^n))^{\times}$ be the multiplicative group of the ring $\mathbb{Z}/(p^n)$. That is, $(\mathbb{Z}/(p^n))^{\times} = \{a : 1 \le a \le p^n \text{ and } a \text{ is relative prime to } p\}.$

(a)

Let p be an odd prime and $n \ge 2$. Show that 1 + p is a generator of the cyclic Sylow-p group of $(\mathbb{Z}/(p^n))^{\times}$.

(b)

Determine the group structures of $(\mathbb{Z}/(8))^{\times}$ and $(\mathbb{Z}/(16))^{\times}$?

5

Let $k[[x]] = \{a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx_n + \dots : a_i \in k\}$ be the ring of formal power series over the field k.

Find all units (invertible elements) in k[[x]].

(b)

(a)

Classify all ideals in k[[x]].

(c)

Classify all maximal ideals in k[[x]].

(d)

6

Classify all prime ideals in k[[x]].

Let F be a field, and K a finite extension of F. Let a be algebraic over K. Show that (a) $[K(a):K] \leq [F(a):F].$

(b)
$$[K(a):F(a)] \le [K:F].$$

[回上頁]

calbat 2003-07-08