臺灣大學數學系

八十九學年度博士班入學考試題

代數

[回上頁]

1.

(20%) Let G be a finite abelian group and $x, y \in G$. Let the order of x be m and the order of y be n. (1) Prove or disprove: (i) If (m, n) = 1, then the order of xy is mn. (ii) The order of xy is [m, n] (L.C.M. of m and n). (2) Show that G contains a cyclic subgroup of order [m, n]. 2. (20%) Find all homomorphisms ϕ for the given groups: (1) $\phi: \mathbf{Z}_6 imes \mathbf{Z} o \mathbf{Z} imes \mathbf{Z}_{10}$. (\mathbf{Z}_n is the cyclic group of order n.) (2) $\phi: \mathbf{S_4}
ightarrow \mathbf{S_3}.$ ($\mathbf{S_n}$ is the symmetric group of degree n.) 3. (15%) Let A be any complex $n \times n$ matrix. Show that $I + A^*A$ is nonsingular. ($A^* = \overline{A}^t$ where $\overline{}$ denotes the complex conjugation and t denotes the transpose.) 4. (15%) Let R be a commutative ring in which every element x satisfying $x^2 = x$. (1) Show that 2x = 0 for all $x \in R$.

Show that every finitely generated ideal in R is principal.

(15%) Let R be a right artinian ring, $n \in N$. Show that the matrix ring $M_n(R)$ is right artinian.

6.

5.

(15%) Let E = F(t) where t is transcendental over the field F. Let $u = \frac{f(t)}{g(t)} \in E$, where (f(t), g(t)) = 1. Show that t is algebraic over F(u) with degree $\max\{\deg f, \deg g\}.$

[回上頁]