臺灣大學應用數學科學研究所 109 學年度碩士班甄試試題 科目:機率統計 2019.10.18

- 1. (15%) Let $Y = \exp(Z)$ and Z be a normal random variable with mean μ and variance σ^2 . Compute the mean and variance of Y.
- 2. (15%) Let X, Y, and Z be independent N(0,1). Let Θ , Φ , and R be the corresponding random variables with $X = R \sin \Phi \cos \Theta$, $Y = R \sin \Phi \sin \Theta$, and $Z = R \cos \Phi$. Find the joint distribution of (Θ, Φ, R) .
- 3. (20%) Let X_1, \ldots, X_n be a random sample from a normal distribution with mean μ and variance σ^2 . Derive the distribution of $\frac{\sqrt{n}(\bar{X}_n \mu)}{S_n}$, where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $S_n^2 = \frac{1}{(n-1)} \sum_{i=1}^n (X_i \bar{X}_n)^2$ are the sample mean and sample variance, respectively.
- 4. (10%) (15%) Let X_1, \ldots, X_{n+1} be a random sample from $Bernoulli(\pi)$ and $h(\pi) = P(\sum_{i=1}^{n} X_i > X_{n+1}|\pi)$. Find the maximum likelihood estimator of $h(\pi)$ and derive its asymptotic distribution.
- 5. (10%) (15%) Let $\{x_1, \ldots, x_n\}$ be observed values of a random sample $\{X_1, \ldots, X_n\}$ from a normal distribution with mean μ and variance σ^2 , where σ^2 is an unknown constant. Express the corresponding p-value and power function of the likelihood ratio test for the hypotheses $H_0: \mu \geq \mu_0$ versus $H_A: \mu < \mu_0$.