臺灣大學應用數學科學研究所 108 學年度碩士班甄試試題 科目:機率統計 2018.10.19

- 1. (15%) Specify the joint distribution of R and Θ so that $X = R \cos \Theta$ and $Y = R \sin \Theta$ are independent standard normal random variables.
- 2. (15%) Let X_1, \ldots, X_n be a random sample from a normal distribution with mean μ_0 and variance σ_0^2 . Find the mean and variance of $S^2 = \sum_{i=1}^n (X_i \bar{X})^2/(n-1)$, where \bar{X} is the sample mean of X_1, \ldots, X_n .
- 3. (15%) Let X_1, \ldots, X_n be a random sample from a normal distribution with mean μ and variance σ_0^2 , where σ_0^2 is an unknown constant. Consider the hypotheses $H_0: \mu \geq \mu_0$ versus $H_A: \mu < \mu_0$. Compute the power at μ_1 with $\mu_1 < \mu_0$.
- 4. Let $\{X_{11}, \ldots, X_{1n_1}\}, \cdots, \{X_{k1}, \ldots, X_{kn_k}\}$ be k (k > 2) independent random samples from $N(\mu_{01}, \sigma_0^2), \ldots, N(\mu_{0k}, \sigma_0^2)$, respectively.
- (4a) (7%) (8%) Write the corresponding likelihood function and derive the maximum likelihood estimator of $(\mu_{01}, \ldots, \mu_{0k}, \sigma_0^2)$.
- (4b) (10%) Consider the hypotheses $H_0: \mu_{01} = \dots, \mu_{0k}$ versus $H_A: \mu_{0i} \neq \mu_{0j}$ for some $i \neq j$. Derive the likelihood ratio test with size α , $0 < \alpha < 1$.
- 5. Let X_1, \ldots, X_n $(n \ge 2)$ be a random sample from a $Bernoulli(\pi_0), \ 0 < \pi_0 < 1$.
- (5a) (10%) Find the uniformly minimum variance unbiased estimator of $\pi_0(1-\pi_0)$.
- (5b) (10%) Suppose that the sample size is large enough. Construct an approximated $(1-\alpha)$, $0 < \alpha < 1$, confidence interval for π_0 .
- (5c) (10%) Find the smallest sample size to achieve $P(|\hat{\pi}_n \pi| \le e) \approx 1 \alpha$, where $\hat{\pi}_n$ is the sample mean.