臺灣大學應用數學科學研究所 105 學年度碩士班甄試試題 科目:機率統計 2015.10.23

1. (8%) (7%) Let f(t) and F(t) stand for the respective probability density function and cumulative distribution function of a discrete non-negative random variable T with the support $\{t_1 < \ldots < t_m\}$, S(t) = 1 - F(t), and $\lambda_i = P(T = t_i | T \ge t_i)$, $i = 1, \ldots, m$. Express $f(t_i)$ and $S(t_i)$ in terms of λ_i 's.

2. (10%) Let X have a Gamma distribution with parameters $\alpha > 1$ and β . Compute the mean of the random quantity 1/X.

3. (15%) Let X_1, \ldots, X_n be a random sample from a continuous distribution F(x) with the corresponding order statistics $X_{(1)}, \ldots, X_{(n)}$. Derive the distribution of $F(X_{(i)}), i = 1, \ldots, n$.

4. (10%) (15%) Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Find the maximum likelihood estimator of $\Phi((x-\mu)/\sigma)$, where $\Phi(\cdot)$ represents the cumulative distribution function of a standard normal random variable and x is a given value, and derive its asymptotic distribution.

5. (8%) (7%) Let X_1, \ldots, X_n be a random sample from $Poisson(\lambda)$ and λ have a $Gamma(\alpha, \beta)$ distribution. Find the posterior distribution of λ and the Bayes estimator of λ under the absolute error loss function.

6. Let X_1, \ldots, X_n be a random sample from a density function $f(x|\lambda) = \theta e^{-\lambda x} I_{\{(0,\infty)\}}(x)$ with $\lambda > 0$.

(6a) (10%) Show that the rejection region of a likelihood ratio test of $H_0: \lambda = \lambda_0$ versus $H_A: \lambda \neq \lambda_0$ is of the form $\{(X_1, \ldots, X_n): \overline{X}e^{-\lambda_0\overline{X}}\}$, where \overline{X} is the sample mean of X_1, \ldots, X_n .

(6b) (10%) Find a valid p-value for the above hypotheses.