臺灣大學應用數學科學研究所 104 學年度碩士班甄試試題

科目:機率統計

2014.10.24

- 1. (15%) Suppose we toss a coin N times independently and let p be the probability of getting head when N = 1. Let X and Y denote the number of heads and the number of tails respectively.
 - (a) (5%) Prove that X and Y are dependent when N = 1.
 - (b) (10%) Suppose that the coin is tossed N times. The number of tosses N is a random variable and $N \sim Poisson(\lambda)$. Again, denote the number of heads and tails by X and Y, respectively. Show that X and Y are independent.
- 2. (20%) Let $X_1, \dots, X_n \sim Uniform(0, 1)$ and $Y_n = \bar{X}_n^2$. Here \bar{X}_n is the average of X_1, \dots, X_n . Find the asymptotic distribution of Y_n . (i.e., Find a_n and b such that $a_n(Y_n b)$ converges to a non-degenerate distribution.)
- (20%) Let X₁, X₂,... be a sequence of independent and identically distributed random variables with density f(·). Suppose that P(X_i > 0) = 1 and that λ = lim_{x→0} f(x) > 0. Set X₍₁₎ to be min{X₁,...,X_n} and Y_n = nX₍₁₎. Determine the asymptotic distribution of Y_n.
- 4. (20%) Consider the one-sample problem: $Y_i \sim N(\mu, 1), 1 \leq i \leq n$ with the Y_i s i.i.d.
 - (a) (5%) Determine $\hat{\mu}_c$ which is the maximum likelihood estimator of μ when $|\mu|^2 \leq c$. Here $c \geq 0$.
 - (b) (7%) Determine the mean square error of $\hat{\mu}_c$. (If you are not sure on your answer obtained in (a), you can assume that $\hat{\mu}_c$ is $\bar{Y}/(1+c/n)$ where \bar{Y} is the average of Y_i , $1 \le i \le n$.)
 - (c) (8%) Determine $\hat{\mu}_{Lasso}$ which is the maximum likelihood estimator of μ when $|\mu| \leq c$. Here $c \geq 0$.
- 5. (25%) Let X_1, X_2, \ldots, X_n be independent and identically distributed normally distributed random variables with mean θ and variance 1. Consider testing $H_0: \theta = 0$ versus $H_a: \theta = \theta_n$. Here $\theta_n > 0$.
 - (a) (7%) Determine the rejection region of the most powerful test at level α , $0 < \alpha < 1$. Give reason to justify your answer.
 - (b) (8%) Find the power of the test you have in (a) under H_a when $\theta_n = 1/\sqrt{n}$. (i.e. Fnd $\beta(\theta_n)$.) If you are not sure that your answer of (a) is correct, you can answer (b) by assuming that the rejection region is $R = \{n^{-1} \sum_{i=1}^{n} X_i > c_n\}$. You then need to determine c_n .
 - (c) (10%) Determine the limit of $\beta(\theta_n)$ with $\theta_n = 1/\sqrt{n}$ as n goes to infinity.