國立臺灣大學應用數學科學研究所114學年度碩士班甄試入學筆試 微分方程與線性代數

1. (15 pts) Solve the following equations.

(a)
$$\frac{dy}{dx} = \frac{y}{x - y}$$
.

(b)
$$xy\frac{dy}{dx} + e^y = 0.$$

Let
$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ -1 & 6 \end{pmatrix}$$
.
(a) (15 pts) Find $e^{\mathbf{A}t}$.

(b) (10 pts) Solve the system
$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \mathbf{x}(0) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}.$$

(c) (10 pts) Let S be an $n \times n$ matrix with real-valued entries. Assume $S^3 = S$ and $0 \le a < 1$. Show that $I_{n\times n} - aS$ is invertible and

$$(I_{n\times n} - aS)^{-1} = I_{n\times n} + pS + qS^2$$
 with some $p, q \in \mathbb{R}$.

3. Let P be the vector space of all polynomials with real coefficients,

$$Q = \{ f \in P : f(0) = f(1) = 0 \}$$
, and $Q_5 = \{ f \in Q : \text{degree of } f \leq 5 \}$. Suppose that

$$T(f) = x^{2} f''(x) + 7x f'(x) + 8f(x),$$

$$U = \{ f \in Q_{5} : \exists g \in Q_{5} \text{ such that } T(g) = f \},$$

$$V = \{ f \in Q : \int_{0}^{1} f(x) T(g(x)) dx = 0 \text{ for all } g \in Q \}.$$

- (a) (10 pts) Find the dimension of U.
- (b) (20 pts) Determine V and find its dimension.
- 4. Assume that u and v satisfy the equations

$$u'(t) = \frac{t+1}{u^2(t)+1} - t^2 u(t), \quad u(0) = 1,$$

$$v'(t) = \frac{3t+1}{v^2(t)+1} - t^2 v(t), \quad v(0) = 1.$$

- (a) (10 pts) Show that u(t) > 0 for $t \ge 0$.
- (b) (10 pts) Show that v(t) > u(t) for t > 0