臺灣大學應用數學科學研究所113學年度碩士班甄試筆試試題

科目:微分方程與線性代數 2023.11.02

1. (25 pts) Solve the following equations.

(a)
$$x \frac{dy}{dx} + 2y \ln y = 0, x > 0, y > 0;$$

(b)
$$\frac{dx}{dy} = \frac{x^2 + 3y^2}{xy}.$$

2. (30 pts)

(a) Solve
$$\begin{pmatrix} x''(t) \\ y''(t) \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$$
.
(b) Solve $\begin{pmatrix} x''(t) \\ y''(t) \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$.

(b) Solve
$$\begin{pmatrix} x''(t) \\ y''(t) \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

3. (25 pts) Let **A** be an $n \times n$ matrix with coefficients in \mathbb{R} . Assume that the ODE system

$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t)$$

has a solution $\mathbf{z}(t)$ such that $|\mathbf{z}(t)| = 1$ for all t > 0.

- (a) Show that $\det \mathbf{A} = 0$ if \mathbf{A} is a symmetric matrix;
- (b) Show that **A** has an eigenvalue λ with its real part $Re\lambda = 0$ if **A** is not symmetric.

4. (20 pts)

- (a) Let u(t) be a solution of u'(t) = u(t)(1 u(t)), u(0) > 0. Show that $\lim_{t\to\infty} u(t) = 1$.
- (b) Let v(t) be a solution of $v''(t) = -v^3(t), v(0) > 0$. Show that $\lim_{t\to\infty} v(t)$ does not exist.