## 臺灣大學應用數學科學研究所 108 學年度碩士班甄試試題

科目:微分方程與線性代數

2018.10.19

1. (40%)

Let  $V: \mathbb{R}^n \to \mathbb{R}$  be a smooth and non-constant function. Consider the initial-value problem

$$\begin{cases}
E\begin{bmatrix} p' \\ q' \end{bmatrix} = \begin{bmatrix} \nabla V(p) \\ q \end{bmatrix}, \ t > 0, \\
p(0) = p_0 \in \mathbb{R}^n, \ q(0) = q_0 \in \mathbb{R}^n,
\end{cases} \tag{1}$$

where 
$$E = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$$
 and  $I_n = \operatorname{diag}[1, \cdots, 1] \in \mathbb{R}^{n \times n}$  are constant

matrices. Answer the following questions:

- A. Calculate matrix  $E^2$  (10%)
- B. Find eigenvalues of matrix E (10%)
- C. Find a function H = H(p,q) such that  $\frac{d}{dt}H(p,q) = 0$  for t > 0 and (p,q) is a solution of system (1). Justify your answer. (10%)
- D. Find a function V = V(p) such that (0,0) is a stable equilibrium of system (1). Justify your answer. (10%)
- 2. (40%)

Let 
$$A = (a_{ij}) \in \mathbb{R}^{n \times n}$$
 and  $a_{ij} = \begin{cases} -1 & \text{if } i = j \\ 1 & \text{if } j = i + 1 \\ 0 & \text{otherwise} \end{cases}$ 

- A. Can matrix A be invertible? (10%)
- B. Calculate  $\lim_{k \to \infty} \frac{A^k}{k!}$  (10%)
- C. Calculate  $e^A$  (10%)
- D. Prove that the zero vector is an asymptotically stable equilibrium of the system x' = Ax (10%)
- 3. (20%)

Solve the initial value problem

$$y' = \frac{3x^2}{3y^2 - 4}, \quad y(1) = 0$$

and determine the interval in which the solution is valid.