臺灣大學應用數學科學研究所 110 學年度碩士班甄試試題 科目: 微積分

2020.10.23

- 1. Suppose that f(x) is differentiable on an open interval I.
 - (a) (10 pts) Show that if $f'(a) \neq f'(b)$ for some $a, b \in I$, then for any m between f'(a) and f'(b) there is some c between a and b such that f'(c) = m.
 - (b) (10 pts) Show that if f'(x) is not continuous at $x = a \in I$ then at least one of the one-sided limits $\lim_{x\to a^+} f'(x)$ and $\lim_{x\to a^-} f'(x)$ does not exist.
- 2. Suppose that f is a C^2 function defined on \mathbb{R} .
 - (a) (5 pts) Show that for any $a, b \in \mathbb{R}$ there is some c between a and b such that

$$f(b) - f(a) - f'(a)(b - a) = \frac{f''(c)}{2}(b - a)^2.$$

(b) (10 pts) Show that there is some number $c \in [n - \frac{1}{2}, n + \frac{1}{2}]$ such that

$$\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} f(x) \ dx - f(n) = \frac{f''(c)}{24},$$

where n is any integer. If f''(x) is decreasing, show that

$$f'\left(n + \frac{3}{2}\right) - f'\left(n + \frac{1}{2}\right) \le f''(c) \le f'\left(n - \frac{1}{2}\right) - f'\left(n - \frac{3}{2}\right).$$

- (c) (10 pts) Using the result of (b), give an upper bound and a lower bound for $\sum_{n=k}^{\infty} \frac{1}{n^2}$ and approximate $\sum_{n=1}^{\infty} \frac{1}{n^2}$ to within 0.001.
- 3. f is a continuous function.
 - (a) (10 pts) Show that

$$\int_0^x \int_0^y \int_0^z f(t) dt dz dy = \frac{1}{2} \int_0^x (x-t)^2 f(t) dt.$$

- (b) (10 pts) Derive a similar formula for $\int_0^{x_1} \int_0^{x_2} \cdots \int_0^{x_n} f(t) dt dx_n dx_{n-1} \cdots dx_2$, n > 3.
- 4. (10 pts) Let $f(x, y, z), g_1(x, y, z)$, and $g_2(x, y, z)$ be C^1 functions. Suppose that $\nabla g_1(x, y, z)$ and $\nabla g_2(x, y, z)$ are linearly independent. Consider the problem of maximizing f(x, y, z) subject to the constraints $g_1(x, y, z) = a_1$ and $g_2(x, y, z) = a_2$, where a_1, a_2 are constants. Let $(x(a_1, a_2), y(a_1, a_2), z(a_1, a_2))$ be the point where the maximum value is obtained with corresponding Lagrange multipliers $\mu_1(a_1, a_2), \mu_2(a_1, a_2)$ which means that at $(x(a_1, a_2), y(a_1, a_2), z(a_1, a_2)), \nabla f = \mu_1 \nabla g_1 + \mu_2 \nabla g_2$. Suppose that $x(a_1, a_2), y(a_1, a_2)$, and $z(a_1, a_2)$ are differentiable functions of a_1, a_2 . Compute

$$\frac{\partial}{\partial a_j} f(x(a_1, a_2), y(a_1, a_2), z(a_1, a_2)), \quad j = 1, 2.$$

Write your answers in terms of $\mu_1(a_1, a_2)$ and $\mu_2(a_1, a_2)$.

- 5. (a) (15 pts) Find the average value of $f(x, y, z) = x^2 y^2 + 3z^2$ on the sphere $S_r = \{(x, y, z) | (x 1)^2 + y^2 + z^2 = r^2 \}$ where r > 0 is a constant.
 - (b) (10 pts) Suppose that u(x, y, z) is harmonic on an open region D which contains a ball $B_{\vec{a}}(r) = \{\vec{x} \mid |\vec{x} \vec{a}| \leq r\}$. Find the average value of u on the sphere $S_{\vec{a}}(r) = \{\vec{x} \mid |\vec{x} \vec{a}| = r\}$.